메뉴 건너뛰기




Volumn 64, Issue 4, 2010, Pages 1078-1088

A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: Self-feeding sparse SENSE

Author keywords

Compressed sensing; g factor; Numerical algorithm; Partially parallel imaging; Prior information; Sparsity constraint

Indexed keywords

COMPRESSED SENSING; ENCODING (SYMBOLS); IMAGE DENOISING; IMAGE RECONSTRUCTION; MAGNETIC RESONANCE IMAGING; MEAN SQUARE ERROR; SOLDERED JOINTS;

EID: 77957311066     PISSN: 07403194     EISSN: 15222594     Source Type: Journal    
DOI: 10.1002/mrm.22504     Document Type: Article
Times cited : (52)

References (35)
  • 3
    • 34250320137 scopus 로고    scopus 로고
    • Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
    • DOI 10.1002/mrm.21236
    • Block K, Uecker M, Frahm J. Undersampled radial MRI with multiple coils: iterative image reconstruction using a total variation constraint. Magn Reson Med 2007;57:1086-1098. (Pubitemid 46911293)
    • (2007) Magnetic Resonance in Medicine , vol.57 , Issue.6 , pp. 1086-1098
    • Block, K.T.1    Uecker, M.2    Frahm, J.3
  • 4
    • 77956368392 scopus 로고    scopus 로고
    • Accelerating SENSE using distributed compressed sensing
    • Honolulu, Hawaii
    • Liang D, King KF, Liu B, Ying L. Accelerating SENSE using distributed compressed sensing. Proc Intl Soc Mag Reson Med 17; Honolulu, Hawaii; 2009. p 377.
    • (2009) Proc Intl Soc Mag Reson Med , vol.17 , pp. 377
    • Liang, D.1    King, K.F.2    Liu, B.3    Ying, L.4
  • 6
    • 60549108051 scopus 로고    scopus 로고
    • Combining compressed sensing and parallel imaging
    • Toronto, Canada
    • King KF. Combining compressed sensing and parallel imaging. Proc Intl Soc Mag Reson Med 16; Toronto, Canada; 2008. p 1488.
    • (2008) Proc Intl Soc Mag Reson Med , vol.16 , pp. 1488
    • King, K.F.1
  • 7
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • DOI 10.1002/mrm.21391
    • Lustig M, Donoho D, Pauly JM. Sparse MRI: The application of compressed sensing for rapid MR imaging. Magn Reson Med 2007;58:1182-1195. (Pubitemid 350234205)
    • (2007) Magnetic Resonance in Medicine , vol.58 , Issue.6 , pp. 1182-1195
    • Lustig, M.1    Donoho, D.2    Pauly, J.M.3
  • 8
    • 77957308143 scopus 로고    scopus 로고
    • L1-norm regularization of coil sensitivities in non-linear parallel imaging reconstruction
    • Honolulu, Hawaii
    • Fernandez-Granda C, Senegas J. L1-norm regularization of coil sensitivities in non-linear parallel imaging reconstruction. Proc Intl Soc Mag Reson Med 17; Honolulu, Hawaii; 2009. p 380.
    • (2009) Proc Intl Soc Mag Reson Med , vol.17 , pp. 380
    • Fernandez-Granda, C.1    Senegas, J.2
  • 10
    • 77957319380 scopus 로고    scopus 로고
    • Highly undersampled 3D golden ratio radial imaging with iterative reconstruction
    • Toronto
    • Doneva M, Eggers H, Rahmer J, Bornert P, Mertins A. Highly undersampled 3D golden ratio radial imaging with iterative reconstruction. Intl Soc Mag Reson Med 16; Toronto; 2008. p 336.
    • (2008) Intl Soc Mag Reson Med , vol.16 , pp. 336
    • Doneva, M.1    Eggers, H.2    Rahmer, J.3    Bornert, P.4    Mertins, A.5
  • 11
    • 77957309868 scopus 로고    scopus 로고
    • Self-adjusted regularization ratio for robust compressed sensing
    • Hawaii
    • Huang F, Chen Y. Self-adjusted regularization ratio for robust compressed sensing. Intl Soc Mag Reson Med 17; Hawaii; 2009, p. 4592.
    • (2009) Intl Soc Mag Reson Med , vol.17 , pp. 4592
    • Huang, F.1    Chen, Y.2
  • 12
    • 77949723995 scopus 로고    scopus 로고
    • A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data
    • Yang J, Zhang Y, Yin W. A fast TVL1-L2 minimization algorithm for signal reconstruction from partial Fourier data: IEEE Journal of Selected Topics in Signal Processing, 2009;4:288-297.
    • (2009) IEEE Journal of Selected Topics in Signal Processing , vol.4 , pp. 288-297
    • Yang, J.1    Zhang, Y.2    Yin, W.3
  • 13
    • 77349126814 scopus 로고    scopus 로고
    • Fast linearized Bregman iteration for compressive sensing and sparse denoising
    • Osher S, Mao Y, Dong B, Yin W. Fast linearized Bregman iteration for compressive sensing and sparse denoising. Commun Math Sci 2010;8;93-111.
    • (2010) Commun Math Sci , vol.8 , pp. 93-111
    • Osher, S.1    Mao, Y.2    Dong, B.3    Yin, W.4
  • 14
    • 33144483155 scopus 로고    scopus 로고
    • Stable recovery of sparse overcomplete representations in the presence of noise
    • DOI 10.1109/TIT.2005.860430
    • Donoho DL, Elad M, Temlyakov V. Stable recovery of sparse overcomplete represenation in the presence of noise. IEEE Trans Inf Theory 2006;52:6-18. (Pubitemid 43263116)
    • (2006) IEEE Transactions on Information Theory , vol.52 , Issue.1 , pp. 6-18
    • Donoho, D.L.1    Elad, M.2    Temlyakov, V.N.3
  • 17
    • 34250309398 scopus 로고    scopus 로고
    • MR image reconstruction from sparse radial samples using Bregman iteration
    • Seattle, WA
    • Chang T, He L, Fang T. MR image reconstruction from sparse radial samples using Bregman iteration. Intl Soc Mag Reson Med 14; Seattle, WA; 2006. p 696.
    • (2006) Intl Soc Mag Reson Med , vol.14 , pp. 696
    • Chang, T.1    He, L.2    Fang, T.3
  • 18
    • 77957291713 scopus 로고    scopus 로고
    • Linearized Bregman iterations for compressed sensing: UCLA
    • Cai JF, Osher S, Shen Z. Linearized Bregman iterations for compressed sensing: UCLA; 2008. Report nr CAM 08-06.
    • (2008) Report Nr CAM , pp. 8-16
    • Cai, J.F.1    Osher, S.2    Shen, Z.3
  • 19
    • 67749089524 scopus 로고    scopus 로고
    • Fast linearized Bregman iteration for compressive sensing and sparse denoising: UCLA
    • Osher S, Mao Y, Dong B, Yin W. Fast linearized Bregman iteration for compressive sensing and sparse denoising: UCLA; 2008. Report nr CAM 08-37.
    • (2008) Report Nr CAM , pp. 8-37
    • Osher, S.1    Mao, Y.2    Dong, B.3    Yin, W.4
  • 20
    • 84977895355 scopus 로고    scopus 로고
    • Bregman iterative algorithms for L1-minimization with applications to compressed sensing
    • Yin W, Osher S, Goldfarb D, Darbon J. Bregman iterative algorithms for L1-minimization with applications to compressed sensing. SIAM J Imaging Science 2008;1:143-168.
    • (2008) SIAM J Imaging Science , vol.1 , pp. 143-168
    • Yin, W.1    Osher, S.2    Goldfarb, D.3    Darbon, J.4
  • 21
    • 84969334819 scopus 로고    scopus 로고
    • The split Bregman method for L1 regularized problems
    • Goldstein T, Osher S. The split Bregman method for L1 regularized problems. SIAM J Imaging Sci 2009;2:323-343.
    • (2009) SIAM J Imaging Sci , vol.2 , pp. 323-343
    • Goldstein, T.1    Osher, S.2
  • 22
    • 70449472950 scopus 로고    scopus 로고
    • Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts
    • Guo W, Huang F. Adaptive total variation based filtering for MRI images with spatially inhomogeneous noise and artifacts. International Symposium on Biomedical Imaging, Boston, MA; 2009, 101-104.
    • International Symposium on Biomedical Imaging, Boston, MA; 2009 , pp. 101-104
    • Guo, W.1    Huang, F.2
  • 23
    • 85012251675 scopus 로고    scopus 로고
    • A new alternating minimization algorithm for total variation image reconstruction
    • Wang Y, Yang J, Yin W, Zhang Y. A new alternating minimization algorithm for total variation image reconstruction. SIAM J Imaging Sci 2008;1:248-272.
    • (2008) SIAM J Imaging Sci , vol.1 , pp. 248-272
    • Wang, Y.1    Yang, J.2    Yin, W.3    Zhang, Y.4
  • 25
    • 44049111982 scopus 로고
    • Nonlinear total variation based noise removal algorithms
    • Rudin LI, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms. Phys D 1992;60:259-268.
    • (1992) Phys D , vol.60 , pp. 259-268
    • Rudin, L.I.1    Osher, S.2    Fatemi, E.3
  • 27
    • 77957298717 scopus 로고    scopus 로고
    • A general formulation for quantitative g-factor calculation in GRAPPA reconstructions
    • Toronto, Canada
    • Breuer FA, Blaimer M, Seiberlich N, Jakob PM, Griswold MA. A general formulation for quantitative g-factor calculation in GRAPPA reconstructions. Intl Soc Mag Reson Med 16, Toronto, Canada; 2008. p 10.
    • (2008) Intl Soc Mag Reson Med , vol.16 , pp. 10
    • Breuer, F.A.1    Blaimer, M.2    Seiberlich, N.3    Jakob, P.M.4    Griswold, M.A.5
  • 28
    • 51449090553 scopus 로고    scopus 로고
    • Image reconstruction by regularized nonlinear inversion - Joint estimation of coil sensitivities and image content
    • Uecker M, Hohage T, Block KT, Frahm J. Image reconstruction by regularized nonlinear inversion - joint estimation of coil sensitivities and image content. Magn Reson Med 2008;60:674-682.
    • (2008) Magn Reson Med , vol.60 , pp. 674-682
    • Uecker, M.1    Hohage, T.2    Block, K.T.3    Frahm, J.4
  • 29
    • 34250364567 scopus 로고    scopus 로고
    • Joint image reconstruction and sensitivity estimation in SENSE (JSENSE)
    • DOI 10.1002/mrm.21245
    • Ying L, Sheng J. Joint image reconstruction and sensitivity estimation in SENSE (JSENSE). Magn Reson Med 2007;57:1196-1202. (Pubitemid 46911305)
    • (2007) Magnetic Resonance in Medicine , vol.57 , Issue.6 , pp. 1196-1202
    • Ying, L.1    Sheng, J.2
  • 31
    • 77957301048 scopus 로고    scopus 로고
    • A regularization with prior information technique for GRAPPA
    • Toronto
    • Huang F, Li Y, Duensing GR. A regularization with prior information technique for GRAPPA. Intl Soc Mag Reson Med 16; Toronto; 2008. p 1288.
    • (2008) Intl Soc Mag Reson Med , vol.16 , pp. 1288
    • Huang, F.1    Li, Y.2    Duensing, G.R.3
  • 33
    • 85014561619 scopus 로고    scopus 로고
    • A fast iterative shrinkage-thresholding algorithm for linear inverse problems
    • Beck A, Teboulle M. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J Imaging Sci 2009;2:183-202.
    • (2009) SIAM J Imaging Sci , vol.2 , pp. 183-202
    • Beck, A.1    Teboulle, M.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.