메뉴 건너뛰기




Volumn 18, Issue 5, 2009, Pages 670-685

Reservoir optimization in recurrent neural networks using properties of Kronecker product

Author keywords

Echo state networks; Kronecker product; Optimization; Recurrent neural networks; Reservoir computing

Indexed keywords

MATRIX ALGEBRA; TOPOLOGY;

EID: 77957281093     PISSN: 13670751     EISSN: 13689894     Source Type: Journal    
DOI: 10.1093/jigpal/jzp044     Document Type: Article
Times cited : (5)

References (39)
  • 2
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: unifying the algorithms and accelerating convergence
    • Atiya, A.F. and Parlos, A.G., New results on recurrent network training: unifying the algorithms and accelerating convergence, IEEE Transaction on Neural Networks, vol. 11, no. 3, pp. 697-709, 2000.
    • (2000) IEEE Transaction on Neural Networks , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 3
    • 0022150259 scopus 로고
    • Fading memory and the problem of approximating nonlinear operators with Volterra series
    • Boyd, S. and Chua, L.O., Fading memory and the problem of approximating nonlinear operators with Volterra series, IEEE Transactions on Circuits and Systems, vol. 32, pp. 1150-1161, 1985.
    • (1985) IEEE Transactions on Circuits and Systems , vol.32 , pp. 1150-1161
    • Boyd, S.1    Chua, L.O.2
  • 4
    • 33646536035 scopus 로고    scopus 로고
    • A tighter bound for the echo state property
    • Buehner, M., and Young, P., A tighter bound for the echo state property, IEEE Transactions on Neural Networks, vol. 17, no. 3, pp. 820-824, 2006.
    • (2006) IEEE Transactions on Neural Networks , vol.17 , Issue.3 , pp. 820-824
    • Buehner, M.1    Young, P.2
  • 8
    • 0344592212 scopus 로고    scopus 로고
    • Enhanced multi-stream Kalman filter training for recurrent neural networks
    • Suykens J. and Vandewalle, J., (eds), Kluwer
    • Feldkamp, L.A., Prokhorov, D.V., Eagen, C.F., and Yuan, F., Enhanced multi-stream Kalman filter training for recurrent neural networks, In Suykens J. and Vandewalle, J., (eds), Nonlinear Modeling: Advanced Black-Box Techniques, pp. 29-54, Kluwer, 1998.
    • (1998) Nonlinear Modeling: Advanced Black-Box Techniques , pp. 29-54
    • Feldkamp, L.A.1    Prokhorov, D.V.2    Eagen, C.F.3    Yuan, F.4
  • 10
    • 0020118274 scopus 로고
    • Neural networks and physical systems with emergent collective computational abilities
    • Hopfield, J., Neural networks and physical systems with emergent collective computational abilities, Proceedings of the National Academy of Sciences of the USA, vol. 79, no. 8, pp. 2554-2558, 1982.
    • (1982) Proceedings of the National Academy of Sciences of the USA , vol.79 , Issue.8 , pp. 2554-2558
    • Hopfield, J.1
  • 12
    • 1842488370 scopus 로고    scopus 로고
    • GMD report 152, German National Research Center for Information Technology
    • Jaeger, H., Short term memory in echo state networks, GMD report 152, German National Research Center for Information Technology, 2001.
    • (2001) Short term memory in echo state networks
    • Jaeger, H.1
  • 13
    • 34249938474 scopus 로고    scopus 로고
    • Optimization and applications of echo state networks with leaky integrator neurons
    • Jaeger, H., Lukoševičius, M., Popovici, D., and Siewert, U., Optimization and applications of echo state networks with leaky integrator neurons, Neural Networks, vol. 20, no. 3, pp. 335-352, 2007.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 335-352
    • Jaeger, H.1    Lukoševičius, M.2    Popovici, D.3    Siewert, U.4
  • 15
    • 1842421269 scopus 로고    scopus 로고
    • Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication
    • Jaeger, H., and Haas, H. Harnessing nonlinearity: predicting chaotic systems and saving energy in wireless telecommunication, Science, vol. 308, no. 5667, pp. 78-80, 2004.
    • (2004) Science , vol.308 , Issue.5667 , pp. 78-80
    • Jaeger, H.1    Haas, H.2
  • 17
    • 35048860970 scopus 로고    scopus 로고
    • Movement generation and control with generic neural microcircuits
    • Ijspeert, A., Murata, M., and Wakamiya, N., (eds.), Lecture Notes in Computer Science
    • Joshi, P. and Maass, W., Movement generation and control with generic neural microcircuits, In Ijspeert, A., Murata, M., and Wakamiya, N., (eds.) Biologically Inspired Approaches to Advanced Information Technology, Lecture Notes in Computer Science, vol. 3141, pp. 258-273, 2004.
    • (2004) Biologically Inspired Approaches to Advanced Information Technology , vol.3141 , pp. 258-273
    • Joshi, P.1    Maass, W.2
  • 18
    • 0001713459 scopus 로고    scopus 로고
    • The dynamic universality of sigmoidal neural networks
    • Kilian J., and Siegelmann, H., The dynamic universality of sigmoidal neural networks, Information and Computation, vol. 128, pp. 48-56, 1996.
    • (1996) Information and Computation , vol.128 , pp. 48-56
    • Kilian, J.1    Siegelmann, H.2
  • 22
    • 68649088777 scopus 로고    scopus 로고
    • Reservoir Computing Approaches to Recurrent Neural Network Training
    • to appear
    • Lukoševičius, M. and Jaeger H., Reservoir Computing Approaches to Recurrent Neural Network Training, to appear Computer Science Review, 2009.
    • (2009) Computer Science Review
    • Lukoševičius, M.1    Jaeger, H.2
  • 23
    • 28644432156 scopus 로고    scopus 로고
    • Fading memory and kernel properties of generic cortical microcircuit models
    • Maass, W., Natschlager, T., and Markram, H., Fading memory and kernel properties of generic cortical microcircuit models, Journal of Physiology, vol. 98, no. 4-6, pp. 315-330, 2004.
    • (2004) Journal of Physiology , vol.98 , Issue.4-6 , pp. 315-330
    • Maass, W.1    Natschlager, T.2    Markram, H.3
  • 24
    • 0036834701 scopus 로고    scopus 로고
    • Realtime computing without stable states: a new framework for neural computation based on perturbations
    • Maass, W., Natschlager, T., and Markram, H. Realtime computing without stable states: a new framework for neural computation based on perturbations, Neural Computing, vol. 14, no.11, pp. 2531-2560, 2002.
    • (2002) Neural Computing , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlager, T.2    Markram, H.3
  • 25
    • 33846023013 scopus 로고    scopus 로고
    • Analysis and design of echo state networks
    • Ozturk, M., Xu, D., and Principe, J., Analysis and design of echo state networks, Neural Computation, vol. 19, no. 1, pp. 111-138, 2007.
    • (2007) Neural Computation , vol.19 , Issue.1 , pp. 111-138
    • Ozturk, M.1    Xu, D.2    Principe, J.3
  • 26
    • 53849116116 scopus 로고    scopus 로고
    • Recurrent Neural Associative Learning of Forward and Inverse Kinematics for Movement Generation of the Redundant PA-10 Robot
    • Reinhart, R.F. and Steil, J.J., Recurrent Neural Associative Learning of Forward and Inverse Kinematics for Movement Generation of the Redundant PA-10 Robot, ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems, pp. 35-40, 2008.
    • (2008) ECSIS Symposium on Learning and Adaptive Behaviors for Robotic Systems , pp. 35-40
    • Reinhart, R.F.1    Steil, J.J.2
  • 27
    • 12144261601 scopus 로고    scopus 로고
    • Analyzing the weight dynamics of recurrent learning algorithms
    • Schiller, U., and Steil, J., Analyzing the weight dynamics of recurrent learning algorithms, Neurocomputing, vol. 63, pp. 5-23, 2005.
    • (2005) Neurocomputing , vol.63 , pp. 5-23
    • Schiller, U.1    Steil, J.2
  • 31
    • 32544455147 scopus 로고    scopus 로고
    • Online stability of backpropagation-decorrelation recurrent learning
    • Steil, J., Online stability of backpropagation-decorrelation recurrent learning, Neurocomputing, vol. 69, no. 7-9, pp. 642-650, 2006.
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 642-650
    • Steil, J.1
  • 33
    • 34249811184 scopus 로고    scopus 로고
    • Online reservoir adaptation by intrinsic plasticity for backpropagationdecorrelation and echo state learning
    • Steil, J. Online reservoir adaptation by intrinsic plasticity for backpropagationdecorrelation and echo state learning, Neural Networks, vol. 20, no. 3, pp. 353-364, 2007.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 353-364
    • Steil, J.1
  • 34
    • 34249815487 scopus 로고    scopus 로고
    • An experimental unification of reservoir computing methods
    • Verstraeten, D., Schrauwen, B., D'Haene, M., and Stroobandt, D., An experimental unification of reservoir computing methods, Neural Networks, vol. 20, no. 3, pp. 391-403, 2007.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 391-403
    • Verstraeten, D.1    Schrauwen, B.2    D'Haene, M.3    Stroobandt, D.4
  • 35
    • 0025503558 scopus 로고
    • Backpropagation through time: what it does and how to do it
    • Werbos, P.J., Backpropagation through time: what it does and how to do it, Proceedings of the IEEE, vol. 78, no. 10, pp. 1550-1560, 1990.
    • (1990) Proceedings of the IEEE , vol.78 , Issue.10 , pp. 1550-1560
    • Werbos, P.J.1
  • 36
    • 0001202594 scopus 로고
    • A learning algorithm for continuosly running fully recurrent neural networks
    • Williams, R.J. and Zipper, D., A learning algorithm for continuosly running fully recurrent neural networks, Neural Computation, vol. 1, pp. 270-280, 1989.
    • (1989) Neural Computation , vol.1 , pp. 270-280
    • Williams, R.J.1    Zipper, D.2
  • 39
    • 34249819041 scopus 로고    scopus 로고
    • Decoupled echo state networks with lateral inhibition
    • Xue, Y., Yang, L., Haykin, S., Decoupled echo state networks with lateral inhibition, Neural Networks, vol. 20, no. 3, pp. 365-376, 2007.
    • (2007) Neural Networks , vol.20 , Issue.3 , pp. 365-376
    • Xue, Y.1    Yang, L.2    Haykin, S.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.