메뉴 건너뛰기




Volumn 92, Issue 1, 2008, Pages 1-7

A Bayesian regression approach to the prediction of MHC-II binding affinity

Author keywords

MHC II binding affinity; Peptide flanking residues length; Peptide length; Quantitative prediction; Sparse Bayesian regression

Indexed keywords

BAYESIAN NETWORKS; BINDERS; BINDING ENERGY; CHLORINE COMPOUNDS; DATABASE SYSTEMS; FOOD PROCESSING; FORECASTING; HEALTH; LEARNING ALGORITHMS; PEPTIDES; PROTEINS;

EID: 49949115547     PISSN: 01692607     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.cmpb.2008.05.002     Document Type: Article
Times cited : (21)

References (28)
  • 1
    • 0001224048 scopus 로고    scopus 로고
    • Sparse Bayesian learning and the relevance vector machine
    • Tipping M.E. Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. (2001)
    • (2001) J. Mach. Learn. Res.
    • Tipping, M.E.1
  • 2
    • 0142174642 scopus 로고    scopus 로고
    • Prediction of MHC class I binding peptides, using SVMHC
    • Donnes P., and Elofsson A. Prediction of MHC class I binding peptides, using SVMHC. BMC Bioinformatics 3 (2002) 25
    • (2002) BMC Bioinformatics , vol.3 , pp. 25
    • Donnes, P.1    Elofsson, A.2
  • 3
    • 0031051784 scopus 로고    scopus 로고
    • MHC class I and class II structures
    • Jones E.Y. MHC class I and class II structures. Curr. Opin. Immunol. 9 1 (1997) 75-79
    • (1997) Curr. Opin. Immunol. , vol.9 , Issue.1 , pp. 75-79
    • Jones, E.Y.1
  • 4
    • 0031825709 scopus 로고    scopus 로고
    • Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network
    • Brusic V., Rudy G., Honeyman G., et al. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14 2 (1998) 121-130
    • (1998) Bioinformatics , vol.14 , Issue.2 , pp. 121-130
    • Brusic, V.1    Rudy, G.2    Honeyman, G.3
  • 5
    • 2442499729 scopus 로고    scopus 로고
    • Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach
    • Nielsen M., Lundegaard C., Worning P., et al. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach. Bioinformatics 20 9 (2004) 1388-1397
    • (2004) Bioinformatics , vol.20 , Issue.9 , pp. 1388-1397
    • Nielsen, M.1    Lundegaard, C.2    Worning, P.3
  • 6
    • 24144463821 scopus 로고    scopus 로고
    • Prediction of MHC class II binders using the ant colony search strategy
    • Karpenko O., Shi J., and Dai Y. Prediction of MHC class II binders using the ant colony search strategy. Artif. Intell. Med. 35 1-2 (2005) 147-156
    • (2005) Artif. Intell. Med. , vol.35 , Issue.1-2 , pp. 147-156
    • Karpenko, O.1    Shi, J.2    Dai, Y.3
  • 7
    • 33750990098 scopus 로고    scopus 로고
    • Prediction of MHC class II binding peptides based on an iterative learning model
    • Murugan N., and Dai Y. Prediction of MHC class II binding peptides based on an iterative learning model. Immunome Res. 1 (2005) 6
    • (2005) Immunome Res. , vol.1 , pp. 6
    • Murugan, N.1    Dai, Y.2
  • 8
    • 38549105061 scopus 로고    scopus 로고
    • Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms
    • Rajapakse M., Schmidt B., Feng L., and Brusic V. Predicting peptides binding to MHC class II molecules using multi-objective evolutionary algorithms. BMC Bioinformatics 8 (2007) 459
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Rajapakse, M.1    Schmidt, B.2    Feng, L.3    Brusic, V.4
  • 9
    • 33748792816 scopus 로고    scopus 로고
    • Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes
    • Cui J., Han L.Y., Lin H.H., et al. Prediction of MHC-binding peptides of flexible lengths from sequence-derived structural and physicochemical attributes. Mol. Immunol. 44 5 (2007) 866-877
    • (2007) Mol. Immunol. , vol.44 , Issue.5 , pp. 866-877
    • Cui, J.1    Han, L.Y.2    Lin, H.H.3
  • 10
    • 33845240573 scopus 로고    scopus 로고
    • Predicting class II MHC-peptide binding: a kernel based approach using similarity scores
    • Salomon J., and Flower D.R. Predicting class II MHC-peptide binding: a kernel based approach using similarity scores. BMC Bioinformatics 7 (2006) 501
    • (2006) BMC Bioinformatics , vol.7 , pp. 501
    • Salomon, J.1    Flower, D.R.2
  • 11
    • 0344360732 scopus 로고    scopus 로고
    • Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction
    • Doytchinova I.A., and Flower D.R. Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction. Bioinformatics 19 17 (2003) 2263-2270
    • (2003) Bioinformatics , vol.19 , Issue.17 , pp. 2263-2270
    • Doytchinova, I.A.1    Flower, D.R.2
  • 12
    • 33750464517 scopus 로고    scopus 로고
    • SVRMHC prediction server for MHC-binding peptides
    • Wan J., Liu W., Xu Q., et al. SVRMHC prediction server for MHC-binding peptides. BMC Bioinformatics 7 (2006) 463
    • (2006) BMC Bioinformatics , vol.7 , pp. 463
    • Wan, J.1    Liu, W.2    Xu, Q.3
  • 13
    • 0036137241 scopus 로고    scopus 로고
    • ProPred: prediction of HLA-DR binding sites
    • Singh H., and Raghava G.P.S. ProPred: prediction of HLA-DR binding sites. Bioinformatics 17 12 (2001) 1236-1237
    • (2001) Bioinformatics , vol.17 , Issue.12 , pp. 1236-1237
    • Singh, H.1    Raghava, G.P.S.2
  • 14
    • 21344466799 scopus 로고    scopus 로고
    • Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications
    • Bui H.H., Sidney J., Peters B., et al. Automated generation and evaluation of specific MHC binding predictive tools: ARB matrix applications. Immunogenetics 57 5 (2005) 304-314
    • (2005) Immunogenetics , vol.57 , Issue.5 , pp. 304-314
    • Bui, H.H.1    Sidney, J.2    Peters, B.3
  • 15
    • 34547778364 scopus 로고    scopus 로고
    • Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method
    • Nielsen M., Lundegaard C., and Lund O. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method. BMC Bioinformatics 8 (2007) 459
    • (2007) BMC Bioinformatics , vol.8 , pp. 459
    • Nielsen, M.1    Lundegaard, C.2    Lund, O.3
  • 16
    • 25144501141 scopus 로고    scopus 로고
    • A Bayesian regression approach to the inference of regulatory networks from gene expression data
    • Rogers S., and Girolami M. A Bayesian regression approach to the inference of regulatory networks from gene expression data. Bioinformatics 21 14 (2005) 3131-3137
    • (2005) Bioinformatics , vol.21 , Issue.14 , pp. 3131-3137
    • Rogers, S.1    Girolami, M.2
  • 17
    • 26844433062 scopus 로고    scopus 로고
    • A Relevance vector machine for automatic detection of clustered microcalcifications
    • Liyang W., Yongyi Y., Nishikawa R.M., et al. A Relevance vector machine for automatic detection of clustered microcalcifications. IEEE Trans. Med. Imaging 24 10 (2005) 1278-1285
    • (2005) IEEE Trans. Med. Imaging , vol.24 , Issue.10 , pp. 1278-1285
    • Liyang, W.1    Yongyi, Y.2    Nishikawa, R.M.3
  • 18
    • 0030802693 scopus 로고    scopus 로고
    • T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage
    • Carson R.T., Vignali K.M., Woodland D.L., et al. T cell receptor recognition of MHC class II-bound peptide flanking residues enhances immunogenicity and results in altered TCR V region usage. Immunity 7 3 (1997) 387-399
    • (1997) Immunity , vol.7 , Issue.3 , pp. 387-399
    • Carson, R.T.1    Vignali, K.M.2    Woodland, D.L.3
  • 19
    • 0033812433 scopus 로고    scopus 로고
    • Modulation of TCR recognition of MHC class II/peptide by processed remote N- and carboxy-terminal epitope extensions
    • Bonomi G., Moschella F., Ombra M.N., et al. Modulation of TCR recognition of MHC class II/peptide by processed remote N- and carboxy-terminal epitope extensions. Hum. Immunol. 61 8 (2000) 753-763
    • (2000) Hum. Immunol. , vol.61 , Issue.8 , pp. 753-763
    • Bonomi, G.1    Moschella, F.2    Ombra, M.N.3
  • 20
    • 0035338992 scopus 로고    scopus 로고
    • Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions
    • Godkin A.J., Smith K.J., Willis A., et al. Naturally processed HLA class II peptides reveal highly conserved immunogenic flanking region sequence preferences that reflect antigen processing rather than peptide-MHC interactions. J. Immunol. 166 11 (2001) 6720-6727
    • (2001) J. Immunol. , vol.166 , Issue.11 , pp. 6720-6727
    • Godkin, A.J.1    Smith, K.J.2    Willis, A.3
  • 21
    • 33751020273 scopus 로고    scopus 로고
    • Peptide length-based prediction of peptide-MHC class II binding
    • Chang S., Ghosh D., Kirschner D., et al. Peptide length-based prediction of peptide-MHC class II binding. Bioinformatics 22 22 (2006) 2761-2767
    • (2006) Bioinformatics , vol.22 , Issue.22 , pp. 2761-2767
    • Chang, S.1    Ghosh, D.2    Kirschner, D.3
  • 22
    • 49949103534 scopus 로고    scopus 로고
    • http://www.jenner.ac.uk/AntiJen/
  • 23
    • 49949088763 scopus 로고    scopus 로고
    • http://www.immuneepitope.org/
  • 24
    • 49949101592 scopus 로고    scopus 로고
    • http://www.jenner.ac.uk/MHCPred
  • 25
    • 49949085631 scopus 로고    scopus 로고
    • http://www.imtech.res.in/raghava/propred
  • 26
    • 49949106722 scopus 로고    scopus 로고
    • http://SVRMHC.umn.edu/SVRMHC
  • 27
    • 49949112849 scopus 로고    scopus 로고
    • http://tools.immuneepitope.org/tools/matrix/iedb_input?matrixClass=II
  • 28
    • 49949092610 scopus 로고    scopus 로고
    • http://tools.immuneepitope.org/analyze/html/mhc_II_binding.html


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.