-
2
-
-
0035789299
-
Mining time-changing data streams
-
ACM, New York
-
Hulten, G., Spencer, L., Domingos, P.: Mining time-changing data streams. In: KDD 2001: Proceedings of the seventh ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 97-106. ACM, New York (2001)
-
(2001)
KDD 2001: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 97-106
-
-
Hulten, G.1
Spencer, L.2
Domingos, P.3
-
3
-
-
37749050180
-
Dynamic weighted majority: An ensemble method for drifting concepts
-
Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting concepts. Journal of Machine Learning Research 8, 2755-2790 (2007)
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 2755-2790
-
-
Kolter, J.Z.1
Maloof, M.A.2
-
4
-
-
0030126609
-
Learning in the presence of concept drift and hidden contexts
-
Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69-101 (1996)
-
(1996)
Machine Learning
, vol.23
, pp. 69-101
-
-
Widmer, G.1
Kubat, M.2
-
5
-
-
70449102582
-
A general framework for mining concept-drifting data streams with skewed distributions
-
Gao, J., Fan, W., Han, J., Yu, P.S.: A general framework for mining concept-drifting data streams with skewed distributions. In: SDM 2007: Proceedings of the SIAM International Conference on Data Mining (2007)
-
(2007)
SDM 2007: Proceedings of the SIAM International Conference on Data Mining
-
-
Gao, J.1
Fan, W.2
Han, J.3
Yu, P.S.4
-
6
-
-
77952415079
-
Mining concept-drifting data streams using ensemble classifiers
-
ACM, New York
-
Wang, H., Fan, W., Yu, P.S., Han, J.: Mining concept-drifting data streams using ensemble classifiers. In: KDD 2003: Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 226-235. ACM, New York (2003)
-
(2003)
KDD 2003: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 226-235
-
-
Wang, H.1
Fan, W.2
Yu, P.S.3
Han, J.4
-
7
-
-
27144501672
-
Borderline-smote: A new over-sampling method in imbalanced data sets learning
-
Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: A new over-sampling method in imbalanced data sets learning. Advances in Intelligent Computing, 878-887 (2005)
-
(2005)
Advances in Intelligent Computing
, pp. 878-887
-
-
Han, H.1
Wang, W.Y.2
Mao, B.H.3
-
13
-
-
29644438050
-
Statistical comparisons of classifiers over multiple data sets
-
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1-30 (2006)
-
(2006)
The Journal of Machine Learning Research
, vol.7
, pp. 1-30
-
-
Demšar, J.1
-
15
-
-
77957041621
-
An architecture for context-aware adaptive data stream mining
-
Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) LNCS (LNAI) Springer, Heidelberg
-
Haghighi, P.D., Gaber, M.M., Krishnaswamy, S., Zaslavsky, A., Seng, L.: An architecture for context-aware adaptive data stream mining. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701. Springer, Heidelberg (2007)
-
(2007)
ECML 2007
, vol.4701
-
-
Haghighi, P.D.1
Gaber, M.M.2
Krishnaswamy, S.3
Zaslavsky, A.4
Seng, L.5
-
16
-
-
0030819669
-
Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
-
Blum, A.: Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain. Machine Learning 26, 5-23 (1997)
-
(1997)
Machine Learning
, vol.26
, pp. 5-23
-
-
Blum, A.1
-
18
-
-
70349896377
-
Detecting concept drift in financial time series prediction using symbolic machine learning
-
World Scientific Publishing, Singapore
-
Harries, M., Horn, K.: Detecting concept drift in financial time series prediction using symbolic machine learning. In: Eighth Australian Joint Conference on Artificial Intelligence, pp. 91-98. World Scientific Publishing, Singapore (1995)
-
(1995)
Eighth Australian Joint Conference on Artificial Intelligence
, pp. 91-98
-
-
Harries, M.1
Horn, K.2
-
19
-
-
0031164523
-
Tracking context changes through meta-learning
-
Widmer, G.: Tracking context changes through meta-learning. Machine Learning 27, 259-286 (1997)
-
(1997)
Machine Learning
, vol.27
, pp. 259-286
-
-
Widmer, G.1
-
20
-
-
2942536418
-
Active mining of data streams
-
Society for Industrial Mathematics
-
Fan, W., Huang, Y.a., Wang, H., Yu, P.S.: Active mining of data streams. In: Proceedings of the Fourth SIAM International Conference on Data Mining, Society for Industrial Mathematics, pp. 457-461 (2004)
-
(2004)
Proceedings of the Fourth SIAM International Conference on Data Mining
, pp. 457-461
-
-
Fan, W.1
Huang, Ya.2
Wang, H.3
Yu, P.S.4
-
21
-
-
0346586663
-
Smote: Synthetic minority over-sampling technique
-
Chawla, N.V., Bowyer, K.W., Hall, L.O., Kegelmeyer, P.W.: Smote: Synthetic minority over-sampling technique. Journal of Artificial Intelligence Research 16, 341-378 (2002)
-
(2002)
Journal of Artificial Intelligence Research
, vol.16
, pp. 341-378
-
-
Chawla, N.V.1
Bowyer, K.W.2
Hall, L.O.3
Kegelmeyer, P.W.4
-
22
-
-
63449090301
-
Learning on the border: Active learning in imbalanced data classification
-
ACM, New York
-
Ertekin, S., Huang, J., Bottou, L., Giles, L.: Learning on the border: Active learning in imbalanced data classification. In: CIKM 2007: Proceedings of the sixteenth ACM Conference on information and knowledge management, pp. 127-136. ACM, New York (2007)
-
(2007)
CIKM 2007: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management
, pp. 127-136
-
-
Ertekin, S.1
Huang, J.2
Bottou, L.3
Giles, L.4
-
23
-
-
0000833531
-
The impact of changing populations on classifier performance
-
ACM, New York
-
Kelly, M.G., Hand, D.J., Adams, N.M.: The impact of changing populations on classifier performance. In: KDD 1999: Proceedings of the fifth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 367-371. ACM, New York (1999)
-
(1999)
KDD 1999: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
, pp. 367-371
-
-
Kelly, M.G.1
Hand, D.J.2
Adams, N.M.3
-
24
-
-
70349310717
-
Classifier ensembles for detecting concept change in streaming data: Overview and perspectives
-
Kuncheva, L.I.: Classifier ensembles for detecting concept change in streaming data: Overview and perspectives. In: Proceedings of the 2nd Workshop SUEMA 2008 (ECAI 2008), pp. 5-10 (2008)
-
(2008)
Proceedings of the 2nd Workshop SUEMA 2008 (ECAI 2008)
, pp. 5-10
-
-
Kuncheva, L.I.1
-
25
-
-
0010012318
-
Incremental learning from noisy data
-
Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1, 317-354 (1986)
-
(1986)
Machine Learning
, vol.1
, pp. 317-354
-
-
Schlimmer, J.C.1
Granger, R.H.2
-
28
-
-
84870477834
-
Adaptive spike detection for resilient data stream mining
-
Australian Computer Society, Inc., Darlinghurst
-
Phua, C., Miles, K.S., Lee, V., Gayler, R.: Adaptive spike detection for resilient data stream mining. In: Proceedings of the sixth Australasian conference on Data mining and analytics (AusDM 2007), pp. 181-188. Australian Computer Society, Inc., Darlinghurst (2007)
-
(2007)
Proceedings of the Sixth Australasian Conference on Data Mining and Analytics (AusDM 2007)
, pp. 181-188
-
-
Phua, C.1
Miles, K.S.2
Lee, V.3
Gayler, R.4
-
29
-
-
0142063407
-
Novelty detection: A review - Part 1: Statistical approaches
-
Markou, M., Singh, S.: Novelty detection: A review - Part 1: Statistical approaches. Signal Processing 83, 2481-2497 (2003)
-
(2003)
Signal Processing
, vol.83
, pp. 2481-2497
-
-
Markou, M.1
Singh, S.2
-
30
-
-
34250648954
-
Modeling skew in data streams
-
ACM, New York
-
Korn, F., Muthukrishnan, S., Wu, Y.: Modeling skew in data streams. In: SIG-MOD 2006: Proceedings of the 2006 ACM SIGMOD international conference on Management of data, pp. 181-192. ACM, New York (2006)
-
(2006)
SIG-MOD 2006: Proceedings of the 2006 ACM SIGMOD International Conference on Management of Data
, pp. 181-192
-
-
Korn, F.1
Muthukrishnan, S.2
Wu, Y.3
-
31
-
-
26444530040
-
Ace: Adaptive classifiers-ensemble system for concept-drifting environments
-
Nishida, K., Yamauchi, K., Omori, T.: Ace: Adaptive classifiers-ensemble system for concept-drifting environments. Multiple Classifier Systems, 176-185 (2005)
-
(2005)
Multiple Classifier Systems
, pp. 176-185
-
-
Nishida, K.1
Yamauchi, K.2
Omori, T.3
|