메뉴 건너뛰기




Volumn 5669 LNAI, Issue , 2010, Pages 53-75

Adaptive methods for classification in arbitrarily imbalanced and drifting data streams

Author keywords

concept drift; Hellinger distance; imbalanced data; Sequential learning; skew; stream mining

Indexed keywords

CONCEPT DRIFTS; HELLINGER DISTANCE; IMBALANCED DATA; SEQUENTIAL LEARNING; SKEW; STREAM MINING;

EID: 77957058214     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-642-14640-4_5     Document Type: Conference Paper
Times cited : (34)

References (31)
  • 3
    • 37749050180 scopus 로고    scopus 로고
    • Dynamic weighted majority: An ensemble method for drifting concepts
    • Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: An ensemble method for drifting concepts. Journal of Machine Learning Research 8, 2755-2790 (2007)
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 2755-2790
    • Kolter, J.Z.1    Maloof, M.A.2
  • 4
    • 0030126609 scopus 로고    scopus 로고
    • Learning in the presence of concept drift and hidden contexts
    • Widmer, G., Kubat, M.: Learning in the presence of concept drift and hidden contexts. Machine Learning 23, 69-101 (1996)
    • (1996) Machine Learning , vol.23 , pp. 69-101
    • Widmer, G.1    Kubat, M.2
  • 7
    • 27144501672 scopus 로고    scopus 로고
    • Borderline-smote: A new over-sampling method in imbalanced data sets learning
    • Han, H., Wang, W.Y., Mao, B.H.: Borderline-smote: A new over-sampling method in imbalanced data sets learning. Advances in Intelligent Computing, 878-887 (2005)
    • (2005) Advances in Intelligent Computing , pp. 878-887
    • Han, H.1    Wang, W.Y.2    Mao, B.H.3
  • 13
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • Demšar, J.: Statistical comparisons of classifiers over multiple data sets. The Journal of Machine Learning Research 7, 1-30 (2006)
    • (2006) The Journal of Machine Learning Research , vol.7 , pp. 1-30
    • Demšar, J.1
  • 15
    • 77957041621 scopus 로고    scopus 로고
    • An architecture for context-aware adaptive data stream mining
    • Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) LNCS (LNAI) Springer, Heidelberg
    • Haghighi, P.D., Gaber, M.M., Krishnaswamy, S., Zaslavsky, A., Seng, L.: An architecture for context-aware adaptive data stream mining. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) ECML 2007. LNCS (LNAI), vol. 4701. Springer, Heidelberg (2007)
    • (2007) ECML 2007 , vol.4701
    • Haghighi, P.D.1    Gaber, M.M.2    Krishnaswamy, S.3    Zaslavsky, A.4    Seng, L.5
  • 16
    • 0030819669 scopus 로고    scopus 로고
    • Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain
    • Blum, A.: Empirical support for winnow and weighted-majority algorithms: Results on a calendar scheduling domain. Machine Learning 26, 5-23 (1997)
    • (1997) Machine Learning , vol.26 , pp. 5-23
    • Blum, A.1
  • 18
    • 70349896377 scopus 로고
    • Detecting concept drift in financial time series prediction using symbolic machine learning
    • World Scientific Publishing, Singapore
    • Harries, M., Horn, K.: Detecting concept drift in financial time series prediction using symbolic machine learning. In: Eighth Australian Joint Conference on Artificial Intelligence, pp. 91-98. World Scientific Publishing, Singapore (1995)
    • (1995) Eighth Australian Joint Conference on Artificial Intelligence , pp. 91-98
    • Harries, M.1    Horn, K.2
  • 19
    • 0031164523 scopus 로고    scopus 로고
    • Tracking context changes through meta-learning
    • Widmer, G.: Tracking context changes through meta-learning. Machine Learning 27, 259-286 (1997)
    • (1997) Machine Learning , vol.27 , pp. 259-286
    • Widmer, G.1
  • 24
    • 70349310717 scopus 로고    scopus 로고
    • Classifier ensembles for detecting concept change in streaming data: Overview and perspectives
    • Kuncheva, L.I.: Classifier ensembles for detecting concept change in streaming data: Overview and perspectives. In: Proceedings of the 2nd Workshop SUEMA 2008 (ECAI 2008), pp. 5-10 (2008)
    • (2008) Proceedings of the 2nd Workshop SUEMA 2008 (ECAI 2008) , pp. 5-10
    • Kuncheva, L.I.1
  • 25
    • 0010012318 scopus 로고
    • Incremental learning from noisy data
    • Schlimmer, J.C., Granger, R.H.: Incremental learning from noisy data. Machine Learning 1, 317-354 (1986)
    • (1986) Machine Learning , vol.1 , pp. 317-354
    • Schlimmer, J.C.1    Granger, R.H.2
  • 29
    • 0142063407 scopus 로고    scopus 로고
    • Novelty detection: A review - Part 1: Statistical approaches
    • Markou, M., Singh, S.: Novelty detection: A review - Part 1: Statistical approaches. Signal Processing 83, 2481-2497 (2003)
    • (2003) Signal Processing , vol.83 , pp. 2481-2497
    • Markou, M.1    Singh, S.2
  • 31
    • 26444530040 scopus 로고    scopus 로고
    • Ace: Adaptive classifiers-ensemble system for concept-drifting environments
    • Nishida, K., Yamauchi, K., Omori, T.: Ace: Adaptive classifiers-ensemble system for concept-drifting environments. Multiple Classifier Systems, 176-185 (2005)
    • (2005) Multiple Classifier Systems , pp. 176-185
    • Nishida, K.1    Yamauchi, K.2    Omori, T.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.