메뉴 건너뛰기




Volumn 24, Issue 7-8, 2010, Pages 434-443

Outlier detection and ambiguity detection for microarray data in probabilistic discriminant partial least squares regression

Author keywords

Ambiguous samples; Discriminant partial least squares; Outlier detection; Reject option

Indexed keywords

DATA HANDLING; DISEASES; LEAST SQUARES APPROXIMATIONS; OLIGONUCLEOTIDES; STATISTICS;

EID: 77957036901     PISSN: 08869383     EISSN: 1099128X     Source Type: Journal    
DOI: 10.1002/cem.1304     Document Type: Article
Times cited : (7)

References (38)
  • 1
    • 34047115341 scopus 로고    scopus 로고
    • Multi-group cancer outlier differential gene expression detection
    • Liu F, Wu B. Multi-group cancer outlier differential gene expression detection. Comput. Biol. Chem. 2007; 31(2): 65-71.
    • (2007) Comput. Biol. Chem. , vol.31 , Issue.2 , pp. 65-71
    • Liu, F.1    Wu, B.2
  • 2
    • 0035793042 scopus 로고    scopus 로고
    • Model-based analysis of oligonucleotide arrays: Expression index computation and outlier detection
    • Li C, Wong WH. Model-based analysis of oligonucleotide arrays: expression index computation and outlier detection. Proc. Natl Acad. Sci. 2001; 98(1): 31-36.
    • (2001) Proc. Natl Acad. Sci. , vol.98 , Issue.1 , pp. 31-36
    • Li, C.1    Wong, W.H.2
  • 3
    • 33645529198 scopus 로고    scopus 로고
    • Quality control and robust estimation for cDNA microarrays with replicates
    • Gottardo R, Raftery AE, Yeung KY, Bumgarner RE. Quality control and robust estimation for cDNA microarrays with replicates. J. Am. Stat. Assoc. 2006; 101(473): 30-40.
    • (2006) J. Am. Stat. Assoc. , vol.101 , Issue.473 , pp. 30-40
    • Gottardo, R.1    Raftery, A.E.2    Yeung, K.Y.3    Bumgarner, R.E.4
  • 4
    • 0036900895 scopus 로고    scopus 로고
    • Fundamentals of experimental design for cDNA microarrays
    • Churchill GA. Fundamentals of experimental design for cDNA microarrays. Nat. Genet. 2002; 32: 490-495.
    • (2002) Nat. Genet. , vol.32 , pp. 490-495
    • Churchill, G.A.1
  • 5
    • 84936916896 scopus 로고
    • Robust locally weighted regression and smoothing scatterplots
    • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J. Am. Stat. Assoc. 1979; 74(368): 829-836.
    • (1979) J. Am. Stat. Assoc. , vol.74 , Issue.368 , pp. 829-836
    • Cleveland, W.S.1
  • 6
    • 1342294092 scopus 로고    scopus 로고
    • Normalization for cDNA microarray data: A robust composite method addressing single and multiple slide systematic variation
    • Yang YH, Dudoit S, Luu P, Lin DM, Peng V, Ngai J and Speed TP. Normalization for cDNA microarray data: a robust composite method addressing single and multiple slide systematic variation. Nucleic Acids Res. 2002; 30(4): e15.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.4
    • Yang, Y.H.1    Dudoit, S.2    Luu, P.3    Lin, D.M.4    Peng, V.5    Ngai, J.6    Speed, T.P.7
  • 9
    • 33646146940 scopus 로고    scopus 로고
    • Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma
    • Olsen SH, Thomas DG, Lucas DR. Cluster analysis of immunohistochemical profiles in synovial sarcoma, malignant peripheral nerve sheath tumor, and Ewing sarcoma. Modern Pathol. 2006; 19: 659-668.
    • (2006) Modern Pathol. , vol.19 , pp. 659-668
    • Olsen, S.H.1    Thomas, D.G.2    Lucas, D.R.3
  • 10
    • 34548572183 scopus 로고    scopus 로고
    • Visualization-based cancer microarray data classification analysis
    • Mramor M, Leban G, Demsar J, Zupan B. Visualization-based cancer microarray data classification analysis. Bioinformatics 2007; 23(16): 2147-2154.
    • (2007) Bioinformatics , vol.23 , Issue.16 , pp. 2147-2154
    • Mramor, M.1    Leban, G.2    Demsar, J.3    Zupan, B.4
  • 11
    • 11244333072 scopus 로고    scopus 로고
    • Statistical process control for large scale microarray experiments
    • Model F, König T, Pipenbrock C, Adorján P. Statistical process control for large scale microarray experiments. Bioinformatics 2002; 18 (Suppl 1): S155-S163.
    • (2002) Bioinformatics , vol.18 , Issue.SUPPL 1
    • Model, F.1    König, T.2    Pipenbrock, C.3    Adorján, P.4
  • 12
    • 62449263773 scopus 로고    scopus 로고
    • Detecting outlier samples in microarray data
    • Article 13
    • Shieh AD, Hung YS. Detecting outlier samples in microarray data. Stat. Applic. Genet. Mol. Biol. 2009; 8(1): Article 13.
    • (2009) Stat. Applic. Genet. Mol. Biol. , vol.8 , Issue.1
    • Shieh, A.D.1    Hung, Y.S.2
  • 14
    • 36749021623 scopus 로고    scopus 로고
    • Agenetic approach for efficient outlier detection in projected space
    • Bandyopadhyay S, Santra S. Agenetic approach for efficient outlier detection in projected space. Pattern Recog. 2008; 41(4): 1338-1349.
    • (2008) Pattern Recog. , vol.41 , Issue.4 , pp. 1338-1349
    • Bandyopadhyay, S.1    Santra, S.2
  • 15
    • 33947677251 scopus 로고    scopus 로고
    • New criteria for selecting differentially expressed genes
    • Loo L-H, Roberts S, Hrebien L, Kam M. New criteria for selecting differentially expressed genes. IEEE Eng. Med. Biol. Mag. 2007; 26(2): 17-26.
    • (2007) IEEE Eng. Med. Biol. Mag. , vol.26 , Issue.2 , pp. 17-26
    • Loo, L-H.1    Roberts, S.2    Hrebien, L.3    Kam, M.4
  • 16
    • 33845439074 scopus 로고    scopus 로고
    • Outlier sums for differential gene expression analysis
    • Tibshirani R, Hastie T. Outlier sums for differential gene expression analysis. Biostatistics 2007; 8(1): 2-8.
    • (2007) Biostatistics , vol.8 , Issue.1 , pp. 2-8
    • Tibshirani, R.1    Hastie, T.2
  • 17
    • 34648817312 scopus 로고    scopus 로고
    • Cancer outlier differential gene expression detection
    • Wu B. Cancer outlier differential gene expression detection. Biostatistics 2007; 8(3): 566-575.
    • (2007) Biostatistics , vol.8 , Issue.3 , pp. 566-575
    • Wu, B.1
  • 18
    • 33846515112 scopus 로고    scopus 로고
    • Partial least squares: A versatile tool for the analysis of high-dimensional genomic data
    • Boulesteix A-L, Strimmer K. Partial least squares: a versatile tool for the analysis of high-dimensional genomic data. Briefing. Bioinformatics 2007; 8(1): 32-44.
    • (2007) Briefing. Bioinformatics , vol.8 , Issue.1 , pp. 32-44
    • Boulesteix, A-L.1    Strimmer, K.2
  • 19
    • 0034648388 scopus 로고    scopus 로고
    • Multiple outlier detection for multivariate calibration using robust statistical techniques
    • Pell RJ. Multiple outlier detection for multivariate calibration using robust statistical techniques. Chemom. Intell. Lab. Syst. 2000; 52: 87-104.
    • (2000) Chemom. Intell. Lab. Syst. , vol.52 , pp. 87-104
    • Pell, R.J.1
  • 20
    • 34548797039 scopus 로고    scopus 로고
    • The model space in partial least squares regression
    • Pell RJ, Ramos LS, Manne R. The model space in partial least squares regression. J. Chemom. 2007; 21: 165-172.
    • (2007) J. Chemom. , vol.21 , pp. 165-172
    • Pell, R.J.1    Ramos, L.S.2    Manne, R.3
  • 22
    • 0037411806 scopus 로고    scopus 로고
    • Exploring process data with the use of robust outlier detection algorithms
    • Chiang LH, Pell RJ, Seasholtz MB. Exploring process data with the use of robust outlier detection algorithms. J. Process Control 2003; 13: 437-449.
    • (2003) J. Process Control , vol.13 , pp. 437-449
    • Chiang, L.H.1    Pell, R.J.2    Seasholtz, M.B.3
  • 24
    • 20444433629 scopus 로고    scopus 로고
    • Outliers in partial least squares regression application to calibration of wine grade with mean infrared data
    • Lleti R, Meléndez E, Ortiz MC, Sarabia LA, Sánchez MS. Outliers in partial least squares regression application to calibration of wine grade with mean infrared data. Anal. Chim. Acta 2005; 544: 60-70.
    • (2005) Anal. Chim. Acta , vol.544 , pp. 60-70
    • Lleti, R.1    Meléndez, E.2    Ortiz, M.C.3    Sarabia, L.A.4    Sánchez, M.S.5
  • 26
    • 0000781020 scopus 로고
    • Partial least squares
    • Johnson KaNL (ed.), Wiley: New York
    • Wold H. Partial least squares. In Encyclopedia of Statistical Sciences, Vol. 6, Johnson KaNL (ed.). Wiley: New York, 1985; 581-591.
    • (1985) Encyclopedia of Statistical Sciences , vol.6 , pp. 581-591
    • Wold, H.1
  • 27
    • 58149204194 scopus 로고    scopus 로고
    • Calculation of the reliability of classification in Discriminant Partial Least-Squares classification
    • Pérez NF, Ferré J and Boqué R. Calculation of the reliability of classification in Discriminant Partial Least-Squares classification. Chemom. Intell. Lab. Sys. 2009; 95: 122-128.
    • (2009) Chemom. Intell. Lab. Sys. , vol.95 , pp. 122-128
    • Pérez, N.F.1    Ferré, J.2    Boqué, R.3
  • 28
    • 0037186424 scopus 로고    scopus 로고
    • Standard error of prediction for multiway PLS: 1. Background and a simulation study
    • Faber NKM, Bro R. Standard error of prediction for multiway PLS: 1. Background and a simulation study. Chemom. Intell. Lab. Sys. 2002; 61(1-2): 133-149.
    • (2002) Chemom. Intell. Lab. Sys. , vol.61 , Issue.1-2 , pp. 133-149
    • Faber, N.K.M.1    Bro, R.2
  • 29
    • 0032801090 scopus 로고    scopus 로고
    • Estimating the uncertainty in estimates of root mean square error of prediction: Application to determining the size of an adequate test set in multivariate calibration
    • Faber NKM. Estimating the uncertainty in estimates of root mean square error of prediction: application to determining the size of an adequate test set in multivariate calibration. Chemom. Intell. Lab. Sys. 1999; 49: 79-89.
    • (1999) Chemom. Intell. Lab. Sys. , vol.49 , pp. 79-89
    • Faber, N.K.M.1
  • 30
    • 0000141851 scopus 로고    scopus 로고
    • A closer look at the bias-variance trade-off in multivariate calibration
    • Faber NKM. A closer look at the bias-variance trade-off in multivariate calibration. J. Chemom. 1999; 13(2): 185-192.
    • (1999) J. Chemom. , vol.13 , Issue.2 , pp. 185-192
    • Faber, N.K.M.1
  • 32
    • 0033583578 scopus 로고    scopus 로고
    • Decision criteria for soft independent modelling of class analogy applied to near infrared data
    • Maesschalck RD, Candolfi A, Massart DL, Heuerding S. Decision criteria for soft independent modelling of class analogy applied to near infrared data. Chemom. Intell. Lab. Sys. 1999; 47(1): 65-77.
    • (1999) Chemom. Intell. Lab. Sys. , vol.47 , Issue.1 , pp. 65-77
    • Maesschalck, R.D.1    Candolfi, A.2    Massart, D.L.3    Heuerding, S.4
  • 33
    • 0014710323 scopus 로고
    • On optimum recognition error and reject tradeoff
    • Chow CK. On optimum recognition error and reject tradeoff. IEEE Trans. Inform. Theory 1970; 16(1): 41-46.
    • (1970) IEEE Trans. Inform. Theory , vol.16 , Issue.1 , pp. 41-46
    • Chow, C.K.1
  • 36
    • 0037623370 scopus 로고    scopus 로고
    • Cancer classification using gene expression data
    • Lu Y, Han J. Cancer classification using gene expression data. Inform. Sys. 2003; 28: 243-268.
    • (2003) Inform. Sys. , vol.28 , pp. 243-268
    • Lu, Y.1    Han, J.2
  • 37
    • 84894887900 scopus 로고
    • Computer aided design of experiments
    • Kennard RW, Stone LA. Computer aided design of experiments. Technometrics 1969; 11(1): 137-148.
    • (1969) Technometrics , vol.11 , Issue.1 , pp. 137-148
    • Kennard, R.W.1    Stone, L.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.