메뉴 건너뛰기




Volumn 27, Issue 8, 2010, Pages 473-478

The lateral compartmentation of the yeast plasma membrane

Author keywords

Can1; Membrane compartment of Can1; Membrane microdomains; Membrane structure; Protein turnover; confocal microscopy

Indexed keywords

CELL MEMBRANE PROTEIN; ERGOSTEROL; FUNGAL PROTEIN; MEMBRANE LIPID; PHOSPHATE PROTON COTRANSPORTER; PROTEIN GAP1; PROTEIN KINASE; PROTEIN LSP 1; PROTEIN PIL 1; UNCLASSIFIED DRUG;

EID: 77956825202     PISSN: 0749503X     EISSN: 10970061     Source Type: Journal    
DOI: 10.1002/yea.1772     Document Type: Review
Times cited : (76)

References (37)
  • 1
    • 0037036135 scopus 로고    scopus 로고
    • A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains
    • Anderson RGW, Jacobson K. 2002. A role for lipid shells in targeting proteins to caveolae, rafts, and other lipid domains. Science 296: 1821-1825.
    • (2002) Science , vol.296 , pp. 1821-1825
    • Anderson, R.G.W.1    Jacobson, K.2
  • 2
    • 0242331729 scopus 로고    scopus 로고
    • Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension
    • Baumgart T, Hess ST, Webb WW. 2003. Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425: 821-824.
    • (2003) Nature , vol.425 , pp. 821-824
    • Baumgart, T.1    Hess, S.T.2    Webb, W.W.3
  • 3
    • 63749117393 scopus 로고    scopus 로고
    • TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain
    • Berchtold D, Walther T. 2009. TORC2 plasma membrane localization is essential for cell viability and restricted to a distinct domain. Mol Biol Cell 20: 1565-1575.
    • (2009) Mol Biol Cell , vol.20 , pp. 1565-1575
    • Berchtold, D.1    Walther, T.2
  • 4
    • 0038557037 scopus 로고    scopus 로고
    • Lipids on the frontier: A century of cellmembrane bilayers
    • Edidin M. 2003. Lipids on the frontier: A century of cellmembrane bilayers. Nat Rev Mol Cell Biol 4: 414-418.
    • (2003) Nat Rev Mol Cell Biol , vol.4 , pp. 414-418
    • Edidin, M.1
  • 5
    • 67649625166 scopus 로고    scopus 로고
    • A genomewide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling
    • Fröhlich F, Moreira K, Aguilar PS, et al. 2009. A genomewide screen for genes affecting eisosomes reveals Nce102 function in sphingolipid signaling. J Cell Biol 185: 1227-1242.
    • (2009) J Cell Biol , vol.185 , pp. 1227-1242
    • Fröhlich, F.1    Moreira, K.2    Aguilar, P.S.3
  • 6
    • 33845924758 scopus 로고    scopus 로고
    • Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast
    • Gaigg B, Toulmay A, Schneiter R. 2006. Very long-chain fatty acid-containing lipids rather than sphingolipids per se are required for raft association and stable surface transport of newly synthesized plasma membrane ATPase in yeast. J Biol Chem 281: 34135-34145.
    • (2006) J Biol Chem , vol.281 , pp. 34135-34145
    • Gaigg, B.1    Toulmay, A.2    Schneiter, R.3
  • 7
    • 58249087906 scopus 로고    scopus 로고
    • Plasma membrane microdomains regulate turnover of a transport protein in yeast
    • Grossmann G, Malinsky J, Loibl M, et al. 2008. Plasma membrane microdomains regulate turnover of a transport protein in yeast. J Cell Biol 183: 1075-1088.
    • (2008) J Cell Biol , vol.183 , pp. 1075-1088
    • Grossmann, G.1    Malinsky, J.2    Loibl, M.3
  • 8
    • 33846240490 scopus 로고    scopus 로고
    • Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast
    • Grossmann G, Opekarová M, Malinsky J, et al. 2007. Membrane potential governs lateral segregation of plasma membrane proteins and lipids in yeast. EMBO J 26: 1-8.
    • (2007) EMBO J , vol.26 , pp. 1-8
    • Grossmann, G.1    Opekarová, M.2    Malinsky, J.3
  • 9
    • 33745141928 scopus 로고    scopus 로고
    • Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae
    • Grossmann G, Opekarová M, Novakova L, et al. 2006. Lipid raft-based membrane compartmentation of a plant transport protein expressed in Saccharomyces cerevisiae. Eukaryot Cell 5: 945-953.
    • (2006) Eukaryot Cell , vol.5 , pp. 945-953
    • Grossmann, G.1    Opekarová, M.2    Novakova, L.3
  • 10
    • 33845901815 scopus 로고    scopus 로고
    • Lipid rafts: At a crossroad between cell biology and physics
    • Jacobson K, Mouritsen OG, Anderson RG. 2007. Lipid rafts: At a crossroad between cell biology and physics. Nat Cell Biol 9: 7-14.
    • (2007) Nat Cell Biol , vol.9 , pp. 7-14
    • Jacobson, K.1    Mouritsen, O.G.2    Anderson, R.G.3
  • 11
    • 26844517614 scopus 로고    scopus 로고
    • A modular design for the clathrin- and actin-mediated endocytosis machinery
    • Kaksonen M, Toret CP, Drubin DG. 2005. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123: 305-320.
    • (2005) Cell , vol.123 , pp. 305-320
    • Kaksonen, M.1    Toret, C.P.2    Drubin, D.G.3
  • 12
    • 1842432088 scopus 로고    scopus 로고
    • Molecular dynamics and interactions for creation of stimulation-induced rafts
    • Kusumi A, Koyama-Honda I, Suzuki K. 2004. Molecular dynamics and interactions for creation of stimulation-induced rafts. Traffic 5: 213-230.
    • (2004) Traffic , vol.5 , pp. 213-230
    • Kusumi, A.1    Koyama-Honda, I.2    Suzuki, K.3
  • 13
    • 34547752909 scopus 로고    scopus 로고
    • Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: Essential role in transport activity and normal control by ubiquitination
    • Lauwers E, Grossmann G, André B. 2007. Evidence for coupled biogenesis of yeast Gap1 permease and sphingolipids: Essential role in transport activity and normal control by ubiquitination. Mol Biol Cell 18: 3068-3080.
    • (2007) Mol Biol Cell , vol.18 , pp. 3068-3080
    • Lauwers, E.1    Grossmann, G.2    André, B.3
  • 14
    • 48249097851 scopus 로고    scopus 로고
    • Plasma membranes are poised for activation of raft phase coalescence at physiological temperature
    • Lingwood D, Ries J, Schwille P, Simons K. 2008. Plasma membranes are poised for activation of raft phase coalescence at physiological temperature. Proc Natl Acad Sci USA 105: 10005-10010.
    • (2008) Proc Natl Acad Sci USA , vol.105 , pp. 10005-10010
    • Lingwood, D.1    Ries, J.2    Schwille, P.3    Simons, K.4
  • 15
    • 74849118341 scopus 로고    scopus 로고
    • Lipid rafts as a membraneorganizing principle
    • Lingwood D, Simons K. 2010. Lipid rafts as a membraneorganizing principle. Science 327: 46-50.
    • (2010) Science , vol.327 , pp. 46-50
    • Lingwood, D.1    Simons, K.2
  • 16
    • 44849101230 scopus 로고    scopus 로고
    • The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover
    • Luo G, Gruhler A, Liu Y, et al. 2008. The sphingolipid long-chain base-Pkh1/2-Ypk1/2 signaling pathway regulates eisosome assembly and turnover. J Biol Chem 283: 10433-10444.
    • (2008) J Biol Chem , vol.283 , pp. 10433-10444
    • Luo, G.1    Gruhler, A.2    Liu, Y.3
  • 17
    • 0345255797 scopus 로고    scopus 로고
    • Visualization of protein compartmentation within the plasma membrane of living yeast cells
    • MalínskáK, Malinsky J, Opekarová M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol Biol Cell 14: 4427-4436.
    • (2003) Mol Biol Cell , vol.14 , pp. 4427-4436
    • MalínskáK Malinsky, J.1    Opekarová, M.2    Tanner, W.3
  • 18
    • 12344298783 scopus 로고    scopus 로고
    • Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells
    • MalínskáK, Malinsky J, Opekarová M, Tanner W. 2004. Distribution of Can1p into stable domains reflects lateral protein segregation within the plasma membrane of living S. cerevisiae cells. J Cell Sci 117: 6031-6041.
    • (2004) J Cell Sci , vol.117 , pp. 6031-6041
    • MalínskáK Malinsky, J.1    Opekarová, M.2    Tanner, W.3
  • 19
    • 85010225704 scopus 로고
    • Fine structure in frozen-etched yeast cells
    • Moor H, Mühlethaler K. 1963. Fine structure in frozen-etched yeast cells. J Cell Biol 17: 609-628.
    • (1963) J Cell Biol , vol.17 , pp. 609-628
    • Moor, H.1    Mühlethaler, K.2
  • 21
    • 0344585437 scopus 로고    scopus 로고
    • Lipid rafts: Elusive or illusive?
    • Munro S. 2003. Lipid rafts: Elusive or illusive? Cell 115: 377-388.
    • (2003) Cell , vol.115 , pp. 377-388
    • Munro, S.1
  • 22
    • 0037450544 scopus 로고    scopus 로고
    • Specific lipid requirements of membrane proteins - A putative bottleneck in heterologous expression
    • Opekarová M, Tanner W. 2003. Specific lipid requirements of membrane proteins - a putative bottleneck in heterologous expression. Biochim Biophys Acta 1610: 11-22.
    • (2003) Biochim Biophys Acta , vol.1610 , pp. 11-22
    • Opekarová, M.1    Tanner, W.2
  • 23
    • 0037136036 scopus 로고    scopus 로고
    • Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast
    • Opekarová M, Robl I, Tanner W. 2002. Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast. Biochim Biophys Acta 1564: 9-13.
    • (2002) Biochim Biophys Acta , vol.1564 , pp. 9-13
    • Opekarová, M.1    Robl, I.2    Tanner, W.3
  • 24
    • 41649115605 scopus 로고    scopus 로고
    • A lipidmediated quality control process in the Golgi apparatus in yeast
    • Pineau L, Bonifait L, Berjeaud JM, et al. 2008. A lipidmediated quality control process in the Golgi apparatus in yeast. Mol Biol Cell 19: 807-821.
    • (2008) Mol Biol Cell , vol.19 , pp. 807-821
    • Pineau, L.1    Bonifait, L.2    Berjeaud, J.M.3
  • 25
    • 0034611005 scopus 로고    scopus 로고
    • Sphingolipid- cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells
    • Pralle A, Keller P, Florin EL, et al. 2000. Sphingolipid- cholesterol rafts diffuse as small entities in the plasma membrane of mammalian cells. J Cell Biol 148: 997-1008.
    • (2000) J Cell Biol , vol.148 , pp. 997-1008
    • Pralle, A.1    Keller, P.2    Florin, E.L.3
  • 26
    • 0343550366 scopus 로고    scopus 로고
    • Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: Specific requirement of phosphatidylcholine for permease stability
    • Robl I, Grassl R, Tanner W, Opekarová M. 2000. Properties of a reconstituted eukaryotic hexose/proton symporter solubilized by structurally related non-ionic detergents: Specific requirement of phosphatidylcholine for permease stability. Biochim Biophys Acta 1463: 407-418.
    • (2000) Biochim Biophys Acta , vol.1463 , pp. 407-418
    • Robl, I.1    Grassl, R.2    Tanner, W.3    Opekarová, M.4
  • 27
    • 0036734541 scopus 로고    scopus 로고
    • Pkh1 and Pkh2 differentially phosphorylate and activate ypk1 and ykr2 and define protein kinase modules required for maintenance of cell wall integrity
    • Roelants FM, Torrance PD, Bezman N, Thorner J. 2002. Pkh1 and Pkh2 differentially phosphorylate and activate ypk1 and ykr2 and define protein kinase modules required for maintenance of cell wall integrity. Mol Biol Cell 13: 3005-3028.
    • (2002) Mol Biol Cell , vol.13 , pp. 3005-3028
    • Roelants, F.M.1    Torrance, P.D.2    Bezman, N.3    Thorner, J.4
  • 28
    • 0030949124 scopus 로고    scopus 로고
    • Functional rafts in cell membranes
    • Simons K, Ikonen E. 1997. Functional rafts in cell membranes. Nature 387: 569-572.
    • (1997) Nature , vol.387 , pp. 569-572
    • Simons, K.1    Ikonen, E.2
  • 29
    • 0034304851 scopus 로고    scopus 로고
    • Lipid rafts and signal transduction
    • Simons K, Toomre D. 2000. Lipid rafts and signal transduction. Nat Rev Mol Cell Biol 1: 31-39.
    • (2000) Nat Rev Mol Cell Biol , vol.1 , pp. 31-39
    • Simons, K.1    Toomre, D.2
  • 30
    • 0015514472 scopus 로고
    • The fluid mosaic model of the structure of cell membranes
    • Singer SJ, Nicolson GL. 1972. The fluid mosaic model of the structure of cell membranes. Science 175: 720-731
    • (1972) Science , vol.175 , pp. 720-731
    • Singer, S.J.1    Nicolson, G.L.2
  • 31
    • 70350018451 scopus 로고    scopus 로고
    • Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1
    • Strádalová V, Stahlschmidt W, Grossmann G, et al. 2009. Furrow-like invaginations of the yeast plasma membrane correspond to membrane compartment of Can1. J Cell Sci 122: 2887-2894
    • (2009) J Cell Sci , vol.122 , pp. 2887-2894
    • Strádalová, V.1    Stahlschmidt, W.2    Grossmann, G.3
  • 32
    • 0038491550 scopus 로고    scopus 로고
    • Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane
    • Umebayashi K, Nakano A. 2003. Ergosterol is required for targeting of tryptophan permease to the yeast plasma membrane. J Cell Biol 161: 1117-1131.
    • (2003) J Cell Biol , vol.161 , pp. 1117-1131
    • Umebayashi, K.1    Nakano, A.2
  • 33
    • 0032552054 scopus 로고    scopus 로고
    • GPI-anchored proteins are organized in submicron domains at the cell surface
    • Varma R, Mayor S. 1998. GPI-anchored proteins are organized in submicron domains at the cell surface. Nature 394: 798-801.
    • (1998) Nature , vol.394 , pp. 798-801
    • Varma, R.1    Mayor, S.2
  • 34
    • 37149013110 scopus 로고    scopus 로고
    • Pkh-kinases control eisosome assembly and organization
    • Walther TC, Aguilar PS, Fröhlich F, et al. 2007. Pkh-kinases control eisosome assembly and organization. EMBO J 26: 4946-4955.
    • (2007) EMBO J , vol.26 , pp. 4946-4955
    • Walther, T.C.1    Aguilar, P.S.2    Fröhlich, F.3
  • 35
    • 33644503549 scopus 로고    scopus 로고
    • Eisosomes mark static sites of endocytosis
    • Walther TC, Brickner JH, Aguilar PS, et al. 2006. Eisosomes mark static sites of endocytosis. Nature 439: 998-1003.
    • (2006) Nature , vol.439 , pp. 998-1003
    • Walther, T.C.1    Brickner, J.H.2    Aguilar, P.S.3
  • 36
    • 0036142221 scopus 로고    scopus 로고
    • The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation
    • Young ME, Karpova TS, Brügger B, et al. 2002. The Sur7p family defines novel cortical domains in Saccharomyces cerevisiae, affects sphingolipid metabolism, and is involved in sporulation. Mol Cell Biol 22: 927-934.
    • (2002) Mol Cell Biol , vol.22 , pp. 927-934
    • Young, M.E.1    Karpova, T.S.2    Brügger, B.3
  • 37
    • 2542499556 scopus 로고    scopus 로고
    • Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p
    • Zhang X, Lester RL, Dickson RC. 2004. Pil1p and Lsp1p negatively regulate the 3-phosphoinositide-dependent protein kinase-like kinase Pkh1p and downstream signaling pathways Pkc1p and Ypk1p. J Biol Chem 279: 22030-22038.
    • (2004) J Biol Chem , vol.279 , pp. 22030-22038
    • Zhang, X.1    Lester, R.L.2    Dickson, R.C.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.