메뉴 건너뛰기




Volumn , Issue , 2010, Pages 147-152

On the gradient-based algorithm for matrix factorization applied to dimensionality reduction

Author keywords

Cross validation; Gene expression data; Gradient based optimisation; Matrix factorisation

Indexed keywords

ANALYTICAL RESULTS; CROSS VALIDATION; DIMENSIONALITY REDUCTION; EXPRESSION DATA; FACTORISATION; GENE EXPRESSION DATA; GENERAL METHOD; GRADIENT BASED; GRADIENT BASED ALGORITHM; HIGH DIMENSIONALITY; MATRIX; MATRIX DECOMPOSITION; MATRIX FACTORIZATIONS; META-GENES; MICROARRAY DATA; NUMBER OF SAMPLES; SUPERVISED CLASSIFICATION; UNSUPERVISED LEARNING METHOD;

EID: 77956387580     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (1)

References (15)
  • 2
    • 0037076322 scopus 로고    scopus 로고
    • Selection bias in gene extraction on the basis of microarray gene expression data
    • Ambroise, C. and McLachlan, G. (2002). Selection bias in gene extraction on the basis of microarray gene expression data. Proceedings of the National Academy of Sciences USA, 99:6562-6566.
    • (2002) Proceedings of the National Academy of Sciences USA , vol.99 , pp. 6562-6566
    • Ambroise, C.1    McLachlan, G.2
  • 3
    • 0040528764 scopus 로고
    • Multinomial logistic regression algorithm
    • Bohning, D. (1992). Multinomial logistic regression algorithm. Ann. Inst. Statist. Math., 44(1): 197-200.
    • (1992) Ann. Inst. Statist. Math. , vol.44 , Issue.1 , pp. 197-200
    • Bohning, D.1
  • 5
    • 0038391397 scopus 로고    scopus 로고
    • Boosting for tumor classification with gene expression data
    • Dettling, M. and Buhlmann, P. (2003). Boosting for tumor classification with gene expression data. Bioinformatics, 19(9): 1061-1069.
    • (2003) Bioinformatics , vol.19 , Issue.9 , pp. 1061-1069
    • Dettling, M.1    Buhlmann, P.2
  • 6
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit, S., Fridlyand, J., and Speed, I. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of Americal Statistical Association, 97(457):77-87.
    • (2002) Journal of Americal Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, I.3
  • 7
    • 0036161259 scopus 로고    scopus 로고
    • Gene selection for cancer classification using support vector machines
    • Guyon, I., Weston, J., Barnhill, S., and Vapnik, V. (2002). Gene selection for cancer classification using support vector machines. Machine Learning, 46:389-422.
    • (2002) Machine Learning , vol.46 , pp. 389-422
    • Guyon, I.1    Weston, J.2    Barnhill, S.3    Vapnik, V.4
  • 8
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan, J., Wei, J., Ringner, M., Saal, L., Ladanyi, M., Westermann, F., Berthold, F., and Schwab, M. (2001). Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nature Medicine, 7(6):673-679.
    • (2001) Nature Medicine , vol.7 , Issue.6 , pp. 673-679
    • Khan, J.1    Wei, J.2    Ringner, M.3    Saal, L.4    Ladanyi, M.5    Westermann, F.6    Berthold, F.7    Schwab, M.8
  • 9
    • 70350647708 scopus 로고    scopus 로고
    • Collaborative filtering with temporal dynamics
    • Koren, Y. (2009). Collaborative filtering with temporal dynamics. In KDD, pages 447-455.
    • (2009) KDD , pp. 447-455
    • Koren, Y.1
  • 11
    • 67649271550 scopus 로고    scopus 로고
    • A regularised method for selecting nested groups of relevant genes from microarray data
    • Mol, C., Mosci, S., Traskine, M., and Verri, A. (2009). A regularised method for selecting nested groups of relevant genes from microarray data. Journal of Computational Biology, 16(5):677-690.
    • (2009) Journal of Computational Biology , vol.16 , Issue.5 , pp. 677-690
    • Mol, C.1    Mosci, S.2    Traskine, M.3    Verri, A.4
  • 12
    • 84963856757 scopus 로고    scopus 로고
    • Minimum redundancy and maximum relevance feature selection and recent advances in cancer classification
    • Peng, H. and Ding, C. (2005). Minimum redundancy and maximum relevance feature selection and recent advances in cancer classification. In SIAM workshop on feature selection for data mining, pages 52-59.
    • (2005) SIAM Workshop on Feature Selection for Data Mining , pp. 52-59
    • Peng, H.1    Ding, C.2
  • 13
    • 33646181069 scopus 로고    scopus 로고
    • A novel ensemble machine learning for robust microarray data classification
    • Peng, Y. (2006). A novel ensemble machine learning for robust microarray data classification. Computers in Biology and Medicine, 36:553-573.
    • (2006) Computers in Biology and Medicine , vol.36 , pp. 553-573
    • Peng, Y.1
  • 15
    • 33646377650 scopus 로고    scopus 로고
    • Recursive svm feature selection and sample classification for mass-spectrometry and microarray data
    • Zhang, X., Lu, X., Shi, Q., Xu, X., Leung, H., Harris, L., Iglehart, J., Miron, A., and Wong, W. (2006). Recursive svm feature selection and sample classification for mass-spectrometry and microarray data. BMC Bioinformatics, 7(197).
    • (2006) BMC Bioinformatics , vol.7 , Issue.197
    • Zhang, X.1    Lu, X.2    Shi, Q.3    Xu, X.4    Leung, H.5    Harris, L.6    Iglehart, J.7    Miron, A.8    Wong, W.9


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.