메뉴 건너뛰기




Volumn , Issue , 2010, Pages 155-162

Frequent subgraph discovery in dynamic networks

Author keywords

[No Author keywords available]

Indexed keywords

APPLICATION DOMAINS; DATA MINING TECHNIQUES; DYNAMIC GRAPH; DYNAMIC NETWORK; EXPERIMENTAL EVALUATION; FREQUENT SUBGRAPHS; GRAPH MINING; MODEL ENTITIES; REAL-WORLD; SUBGRAPH MINING;

EID: 77956256145     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1830252.1830272     Document Type: Conference Paper
Times cited : (51)

References (22)
  • 1
    • 0034098727 scopus 로고    scopus 로고
    • Systematic management and analysis of yeast gene expression data
    • Feb
    • J. Aach, W. Rindone, and G. M. Church. Systematic Management and Analysis of Yeast Gene Expression Data. Genome Res., 10:431-445, Feb 2000.
    • (2000) Genome Res. , vol.10 , pp. 431-445
    • Aach, J.1    Rindone, W.2    Church, G.M.3
  • 3
    • 34748903449 scopus 로고    scopus 로고
    • Pattern mining in frequent dynamic subgraphs
    • K. M. Borgwardt, H.-P. Kriegel, and P. Wackersreuther. Pattern Mining in Frequent Dynamic Subgraphs. In ICDM, pages 818-822, 2006.
    • (2006) ICDM , pp. 818-822
    • Borgwardt, K.M.1    Kriegel, H.-P.2    Wackersreuther, P.3
  • 5
    • 0027652468 scopus 로고
    • Substructure discovery using minimum description length and background knowledge
    • D. J. Cook and L. B. Holder. Substructure Discovery Using Minimum Description Length and Background Knowledge. JAIR, 1:231-255, 1994.
    • (1994) JAIR , vol.1 , pp. 231-255
    • Cook, D.J.1    Holder, L.B.2
  • 9
    • 85006627991 scopus 로고
    • Color set size problem with application to string matching
    • L. C. K. Hui. Color set size problem with application to string matching. In CPM, pages 230-243, 1992.
    • (1992) CPM , pp. 230-243
    • Hui, L.C.K.1
  • 10
    • 0037364958 scopus 로고    scopus 로고
    • Complete mining of frequent patterns from graphs: Mining graph data
    • A. Inokuchi, T. Washio, and H. Motoda. Complete Mining of Frequent Patterns from Graphs: Mining Graph Data. Machine Learning, 50(3):321-354, 2003.
    • (2003) Machine Learning , vol.50 , Issue.3 , pp. 321-354
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 11
    • 4444268694 scopus 로고    scopus 로고
    • Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs
    • N. Kashtan, S. Itzkovitz, R. Milo, and U. Alon. Efficient sampling algorithm for estimating subgraph concentrations and detecting network motifs. Bioinformatics, 20(11):1746-1758, 2004.
    • (2004) Bioinformatics , vol.20 , Issue.11 , pp. 1746-1758
    • Kashtan, N.1    Itzkovitz, S.2    Milo, R.3    Alon, U.4
  • 12
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent Subgraph Discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 13
    • 12244310989 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding Frequent Patterns in a Large Sparse Graph. In SDM, 2004.
    • (2004) SDM
    • Kuramochi, M.1    Karypis, G.2
  • 14
    • 19544365404 scopus 로고    scopus 로고
    • GREW-A scalable frequent subgraph discovery algorithm
    • M. Kuramochi and G. Karypis. GREW-A Scalable Frequent Subgraph Discovery Algorithm. In ICDM, pages 439-442, 2004.
    • (2004) ICDM , pp. 439-442
    • Kuramochi, M.1    Karypis, G.2
  • 15
    • 34548756876 scopus 로고    scopus 로고
    • Structure prediction in temporal networks using frequent subgraphs
    • M. Lahiri and T. Y. Berger-Wolf. Structure Prediction in Temporal Networks using Frequent Subgraphs. In CIDM, pages 35-42, 2007.
    • (2007) CIDM , pp. 35-42
    • Lahiri, M.1    Berger-Wolf, T.Y.2
  • 16
    • 32344436210 scopus 로고    scopus 로고
    • Graphs over time: Densification laws, shrinking diameters and possible explanations
    • J. Leskovec, J. M. Kleinberg, and C. Faloutsos. Graphs over Time: Densification Laws, Shrinking Diameters and Possible Explanations. In KDD, pages 177-187, 2005.
    • (2005) KDD , pp. 177-187
    • Leskovec, J.1    Kleinberg, J.M.2    Faloutsos, C.3
  • 17
    • 0035861990 scopus 로고    scopus 로고
    • Automatic clustering of orthologs and in-paralogs from pairwise species comparisons
    • Oct
    • M. Remm, C. E. V. Storm, and E. L. L. Sonnhammer. Automatic Clustering of Orthologs and In-paralogs from Pairwise Species Comparisons. J. Mol. Biol., 314:1041-1052, Oct 2001.
    • (2001) J. Mol. Biol. , vol.314 , pp. 1041-1052
    • Remm, M.1    Storm, C.E.V.2    Sonnhammer, E.L.L.3
  • 18
    • 0036578795 scopus 로고    scopus 로고
    • Network motifs in the transcriptional regulation network of escherichia coli
    • May
    • S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon. Network motifs in the transcriptional regulation network of Escherichia coli. Nat Genet., 31(1):64-68, May 2002.
    • (2002) Nat Genet. , vol.31 , Issue.1 , pp. 64-68
    • Shen-Orr, S.S.1    Milo, R.2    Mangan, S.3    Alon, U.4
  • 19
    • 33845676319 scopus 로고    scopus 로고
    • Efficient detection of network motifs
    • S. Wernicke. Efficient Detection of Network Motifs. TCBB, 3(4):347-359, 2006.
    • (2006) TCBB , vol.3 , Issue.4 , pp. 347-359
    • Wernicke, S.1
  • 20
    • 0141484611 scopus 로고    scopus 로고
    • Evolutionary conservation of motif constituents in the yeast protein interaction network
    • Oct
    • S. Wuchty, Z. N. Oltvai, and A. L. Barabasi. Evolutionary conservation of motif constituents in the yeast protein interaction network. Nat Genet., 35(2):176-179, Oct 2003.
    • (2003) Nat Genet. , vol.35 , Issue.2 , pp. 176-179
    • Wuchty, S.1    Oltvai, Z.N.2    Barabasi, A.L.3
  • 21
    • 0036088133 scopus 로고    scopus 로고
    • DIP, the database of interacting proteins: A research tool for studying cellular networks of protein interactions
    • Jan
    • I. Xenarios, L. Salwinski, X. J. Duan, P. Higney, S. M. Kim, and D. Eisenberg. DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res., 30(1):303-305, Jan 2002.
    • (2002) Nucleic Acids Res. , vol.30 , Issue.1 , pp. 303-305
    • Xenarios, I.1    Salwinski, L.2    Duan, X.J.3    Higney, P.4    Kim, S.M.5    Eisenberg, D.6
  • 22
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-Based Substructure Pattern Mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.