-
7
-
-
3042597440
-
Learning multi-label scene classification
-
M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):1757-1771, 2004.
-
(2004)
Pattern Recognition
, vol.37
, Issue.9
, pp. 1757-1771
-
-
Boutell, M.R.1
Luo, J.2
Shen, X.3
Brown, C.M.4
-
9
-
-
36649009540
-
SRDA: An efficient algorithm for large-scale discriminant analysis
-
D. Cai, X. He, and J. Han. SRDA: An efficient algorithm for large-scale discriminant analysis. IEEE Transactions on Knowledge and Data Engineering, 20(1):1-12, 2008.
-
(2008)
IEEE Transactions on Knowledge and Data Engineering
, vol.20
, Issue.1
, pp. 1-12
-
-
Cai, D.1
He, X.2
Han, J.3
-
13
-
-
10044285992
-
Canonical correlation analysis: An overview with application to learning methods
-
D. R. Hardoon, S. R. Szedmak, and J. R. Shawe-taylor. Canonical correlation analysis: An overview with application to learning methods. Neural Computation, 16(12):2639-2664, 2004.
-
(2004)
Neural Computation
, vol.16
, Issue.12
, pp. 2639-2664
-
-
Hardoon, D.R.1
Szedmak, S.R.2
Shawe-Taylor, J.R.3
-
14
-
-
0003684449
-
-
Springer, New York, NY, 2nd edition
-
T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining, Inference, and Prediction. Springer, New York, NY, 2nd edition, 2009.
-
(2009)
The Elements of Statistical Learning: Data Mining, Inference, and Prediction
-
-
Hastie, T.1
Tibshirani, R.2
Friedman, J.3
-
15
-
-
0000107975
-
Relations between two sets of variables
-
H. Hotelling. Relations between two sets of variables. Biometrika, 28:312-377, 1936.
-
(1936)
Biometrika
, vol.28
, pp. 312-377
-
-
Hotelling, H.1
-
18
-
-
84876811202
-
Rcv1: A new benchmark collection for text categorization research
-
D. Lewis, Y. Yang, T. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. Journal of Machine Learning Research, 5:361-397, 2004.
-
(2004)
Journal of Machine Learning Research
, vol.5
, pp. 361-397
-
-
Lewis, D.1
Yang, Y.2
Rose, T.3
Li, F.4
-
19
-
-
84976657333
-
Algorithm 583: LSQR: Sparse linear equations and least squares problems
-
C. C. Paige and M. A. Saunders. Algorithm 583: LSQR: Sparse linear equations and least squares problems. ACM Transactions on Mathematical Software, 8(2):195-209, 1982.
-
(1982)
ACM Transactions on Mathematical Software
, vol.8
, Issue.2
, pp. 195-209
-
-
Paige, C.C.1
Saunders, M.A.2
-
20
-
-
0039943513
-
LSQR: An algorithm for sparse linear equations and sparse least squares
-
C. C. Paige and M. A. Saunders. LSQR: An algorithm for sparse linear equations and sparse least squares. ACM Transactions on Mathematical Software, 8(1):43-71, 1982.
-
(1982)
ACM Transactions on Mathematical Software
, vol.8
, Issue.1
, pp. 43-71
-
-
Paige, C.C.1
Saunders, M.A.2
-
23
-
-
0003408420
-
-
MIT Press, Cambridge, MA
-
B. Schölkopf and A. J. Smola. Learning with kernels: support vector machines, regularization, optimization, and beyond. MIT Press, Cambridge, MA, 2002.
-
(2002)
Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond
-
-
Schölkopf, B.1
Smola, A.J.2
-
27
-
-
77249110935
-
On the equivalence between canonical correlation analysis and orthonormalized partial least squares
-
L. Sun, S. Ji, S. Yu, and J. Ye. On the equivalence between canonical correlation analysis and orthonormalized partial least squares. In Proceedings of the 21st International Jont Conference on Artifical Intelligence (IJCAI), pages 1230-1235, 2009.
-
(2009)
Proceedings of the 21st International Jont Conference on Artifical Intelligence (IJCAI)
, pp. 1230-1235
-
-
Sun, L.1
Ji, S.2
Yu, S.3
Ye, J.4
-
30
-
-
0031279853
-
Characterizing the response of PET and fMRI data using multivariate linear models
-
K. Worsley, J.-B. Poline, K. J. Friston, and A.C. Evans. Characterizing the response of PET and fMRI data using multivariate linear models. Neuroimage, 6(4):305-319, 1997.
-
(1997)
Neuroimage
, vol.6
, Issue.4
, pp. 305-319
-
-
Worsley, K.1
Poline, J.-B.2
Friston, K.J.3
Evans, A.C.4
-
31
-
-
21844447839
-
Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems
-
J. Ye. Characterization of a family of algorithms for generalized discriminant analysis on undersampled problems. Journal of Machine Learning Research, 6:483-502, 2005.
-
(2005)
Journal of Machine Learning Research
, vol.6
, pp. 483-502
-
-
Ye, J.1
-
34
-
-
84864027458
-
Learning with hypergraphs: Clustering, classification, and embedding
-
D. Zhou, J. Huang, and B. Schölkopf. Learning with hypergraphs: Clustering, classification, and embedding. In Advances in Neural Information Processing Systems 18 (NIPS), pages 1601-1608, 2006.
-
(2006)
Advances in Neural Information Processing Systems 18 (NIPS)
, pp. 1601-1608
-
-
Zhou, D.1
Huang, J.2
Schölkopf, B.3
|