메뉴 건너뛰기




Volumn 22, Issue 8, 2010, Pages 1961-1992

A spiking neuron as information bottleneck

Author keywords

[No Author keywords available]

Indexed keywords

ARTICLE; BIOLOGICAL MODEL; LEARNING; NERVE CELL; NERVE CELL PLASTICITY; PHYSIOLOGY;

EID: 77955993539     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.08-09-1084     Document Type: Article
Times cited : (25)

References (36)
  • 1
    • 0002469309 scopus 로고    scopus 로고
    • Mutual information maximization: Models of cortical self-organization
    • Becker, S. (1996). Mutual information maximization: Models of cortical self-organization. Network: Computation in Neural Systems, 7(1), 7-31.
    • (1996) Network: Computation in Neural Systems , vol.7 , Issue.1 , pp. 7-31
    • Becker, S.1
  • 2
    • 0026586030 scopus 로고
    • Self-organizing neural network that discovers surfaces in random-dot stereograms
    • Becker, S., & Hinton, G. E. (1992). Self-organizing neural network that discovers surfaces in random-dot stereograms. Nature, 355, 161-163.
    • (1992) Nature , vol.355 , pp. 161-163
    • Becker, S.1    Hinton, G.E.2
  • 3
    • 0029411030 scopus 로고
    • An information-maximization approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information-maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 4
    • 0032535029 scopus 로고    scopus 로고
    • Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type
    • Bi, G., & Poo, M. (1998). Synaptic modifications in cultured hippocampal neurons: Dependence on spike timing, synaptic strength, and postsynaptic cell type. J. Neuroscience, 18(24), 10464-10472.
    • (1998) J. Neuroscience , vol.18 , Issue.24 , pp. 10464-10472
    • Bi, G.1    Poo, M.2
  • 6
    • 0022150259 scopus 로고
    • Fading memory and the problem of approximating nonlinear oparators with Volterra series
    • Boyd, S., & Chua, L. O. (1985). Fading memory and the problem of approximating nonlinear oparators with Volterra series. IEEE Trans. on Circuits and Systems, 32, 1150-1161.
    • (1985) IEEE Trans. on Circuits and Systems , vol.32 , pp. 1150-1161
    • Boyd, S.1    Chua, L.O.2
  • 7
    • 58549091090 scopus 로고    scopus 로고
    • State-dependent computations: Spatiotemporal processing in cortical networks
    • Buonomano, D., & Maass, W. (2009). State-dependent computations: Spatiotemporal processing in cortical networks. Nature Reviews in Neuroscience, 10(2), 113-125.
    • (2009) Nature Reviews in Neuroscience , vol.10 , Issue.2 , pp. 113-125
    • Buonomano, D.1    Maass, W.2
  • 8
    • 48249085332 scopus 로고    scopus 로고
    • Spike timing-dependent plasticity: A Hebbian rule
    • Caporale, N., & Dan, Y. (2008). Spike timing-dependent plasticity: A Hebbian rule. Annu. Rev. Neurosci., 31, 25-46.
    • (2008) Annu. Rev. Neurosci. , vol.31 , pp. 25-46
    • Caporale, N.1    Dan, Y.2
  • 9
    • 0037822252 scopus 로고    scopus 로고
    • Spike-timing-dependent plasticity and relevant mutual information maximization
    • Chechik, G. (2003). Spike-timing-dependent plasticity and relevant mutual information maximization. Neural Computation, 15(7), 1481-1510.
    • (2003) Neural Computation , vol.15 , Issue.7 , pp. 1481-1510
    • Chechik, G.1
  • 10
    • 41849102044 scopus 로고    scopus 로고
    • Predictive coding and the slowness principle: An information-theoretic approach
    • Creutzig, F., & Sprekeler, H. (2008). Predictive coding and the slowness principle: An information-theoretic approach. Neural Computation, 20(4), 1026-1041.
    • (2008) Neural Computation , vol.20 , Issue.4 , pp. 1026-1041
    • Creutzig, F.1    Sprekeler, H.2
  • 12
    • 0037868943 scopus 로고    scopus 로고
    • Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity
    • Gütig, R., Aharonov, R., Rotter, S., & Sompolinsky, H. (2003). Learning input correlations through nonlinear temporally asymmetric Hebbian plasticity. Journal Neurosci., 23, 3697-3714.
    • (2003) Journal Neurosci. , vol.23 , pp. 3697-3714
    • Gütig, R.1    Aharonov, R.2    Rotter, S.3    Sompolinsky, H.4
  • 15
    • 34548552568 scopus 로고    scopus 로고
    • Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity
    • Hee, S. G., Ziburkus, J., Huang, S., Song, L., Kim, I. T., Takamiya, K., et al. (2007). Neuromodulators control the polarity of spike-timing-dependent synaptic plasticity. Neuron, 55, 919-929.
    • (2007) Neuron , vol.55 , pp. 919-929
    • Hee, S.G.1    Ziburkus, J.2    Huang, S.3    Song, L.4    Kim, I.T.5    Takamiya, K.6
  • 16
    • 34848816179 scopus 로고    scopus 로고
    • To recognize shapes, first learn to generate images
    • Hinton, G. (2007). To recognize shapes, first learn to generate images. Progress in Brain Research, 165, 535-547.
    • (2007) Progress in Brain Research , vol.165 , pp. 535-547
    • Hinton, G.1
  • 19
    • 84864045847 scopus 로고    scopus 로고
    • Information bottleneck optimization and independent component extraction with spiking neurons
    • B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Cambridge, MA: MIT Press
    • Klampfl, S., Legenstein, R., & Maass, W. (2007). Information bottleneck optimization and independent component extraction with spiking neurons. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in neural information processing systems, 19 (pp. 713-720). Cambridge, MA: MIT Press.
    • (2007) Advances in neural information processing systems A , vol.19 , pp. 713-720
    • Klampfl, S.1    Legenstein, R.2    Maass, W.3
  • 20
    • 65549123223 scopus 로고    scopus 로고
    • Spiking neurons can learn to solve information bottleneck problems and to extract independent components
    • Klampfl, S., Legenstein, R., & Maass, W. (2009). Spiking neurons can learn to solve information bottleneck problems and to extract independent components. Neural Computation, 21(4), 911-959.
    • (2009) Neural Computation , vol.21 , Issue.4 , pp. 911-959
    • Klampfl, S.1    Legenstein, R.2    Maass, W.3
  • 21
    • 0000353243 scopus 로고
    • How to generate ordered maps by maximizing the mutual information between input and output signals
    • Linsker, R. (1989). How to generate ordered maps by maximizing the mutual information between input and output signals. Neural Computation, 1(3), 402-411.
    • (1989) Neural Computation , vol.1 , Issue.3 , pp. 402-411
    • Linsker, R.1
  • 22
    • 0036834701 scopus 로고    scopus 로고
    • Real-time computing without stable states: A new framework for neural computation based on perturbations
    • Maass, W., Natschlaeger, T., & Markram, H. (2002). Real-time computing without stable states: A new framework for neural computation based on perturbations. Neural Computation, 14(11), 2531-2560.
    • (2002) Neural Computation , vol.14 , Issue.11 , pp. 2531-2560
    • Maass, W.1    Natschlaeger, T.2    Markram, H.3
  • 24
    • 77953779789 scopus 로고    scopus 로고
    • On the maximization of information flow between spiking neurons
    • Parra, L., Beck, J., & Bell, A.(2009). On the maximization of information flow between spiking neurons. Neural Computation, 21, 1-19.
    • (2009) Neural Computation , vol.21 , pp. 1-19
    • Parra, L.1    Beck, J.2    Bell, A.3
  • 25
    • 33745902544 scopus 로고    scopus 로고
    • A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons
    • Sjöström, P. J., & Häusser, M. (2006). A cooperative switch determines the sign of synaptic plasticity in distal dendrites of neocortical pyramidal neurons. Neuron, 51, 227-238.
    • (2006) Neuron , vol.51 , pp. 227-238
    • Sjöström, P.J.1    Häusser, M.2
  • 27
    • 0035924588 scopus 로고    scopus 로고
    • Rate, timing and cooperativity jointly deterimine cortical synaptic plasticity
    • Sjöström, P. J., Turrigiano, G. G., & Nelson, S. B. (2001). Rate, timing and cooperativity jointly deterimine cortical synaptic plasticity. Neuron, 32, 1149-1164.
    • (2001) Neuron , vol.32 , pp. 1149-1164
    • Sjöström, P.J.1    Turrigiano, G.G.2    Nelson, S.B.3
  • 28
    • 0000632147 scopus 로고    scopus 로고
    • Agglomerative information bottleneck
    • In S. A. Solla, T. K. Leen, & K.-R. Muller (Eds.), Cambridge, MA: MIT Press
    • Slonim, N., & Tishby, N. (1999). Agglomerative information bottleneck. In S. A. Solla, T. K. Leen, & K.-R. Muller (Eds.), Advances in neural information processing systems, 12. Cambridge, MA: MIT Press.
    • (1999) Advances in neural information processing systems , vol.12
    • Slonim, N.1    Tishby, N.2
  • 30
    • 84899009523 scopus 로고    scopus 로고
    • Maximum likelihood and the information bottleneck
    • S. Thrün, L. Saul, & B. Schölkopf (Eds.), Cambridge, MA: MIT Press
    • Slonim, N., & Weiss, Y. (2003). Maximum likelihood and the information bottleneck. In S. Thrün, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems, 16 (pp. 351-358). Cambridge, MA: MIT Press.
    • (2003) Advances in neural information processing systems , vol.16 , pp. 351-358
    • Slonim, N.1    Weiss, Y.2
  • 31
    • 0035155356 scopus 로고    scopus 로고
    • Dendritic coincidence detection of EPSPs and action potentials
    • Stuart, G. J., & Häusser, M. (2001). Dendritic coincidence detection of EPSPs and action potentials. Nature, 4(1), 63-71.
    • (2001) Nature , vol.4 , Issue.1 , pp. 63-71
    • Stuart, G.J.1    Häusser, M.2
  • 34
    • 17044416469 scopus 로고    scopus 로고
    • Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission
    • Toyoizumi, T., Pfister, J.-P., Aihara, K., & Gerstner, W. (2005). Generalized Bienenstock-Cooper-Munro rule for spiking neurons that maximizes information transmission. Proc. Natl. Acad. Sci. USA, 102, 5239-5244.
    • (2005) Proc. Natl. Acad. Sci. USA , vol.102 , pp. 5239-5244
    • Toyoizumi, T.1    Pfister, J.-P.2    Aihara, K.3    Gerstner, W.4
  • 36
    • 0036546660 scopus 로고    scopus 로고
    • Slow feature analysis: Unsupervised learning of invariances
    • Wiskott, L., & Sejnowski, T. J. (2002). Slow feature analysis: Unsupervised learning of invariances. Neural Computation, 14(4), 715-770.
    • (2002) Neural Computation , vol.14 , Issue.4 , pp. 715-770
    • Wiskott, L.1    Sejnowski, T.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.