-
1
-
-
33746060884
-
Unifying divergence minimization and statistical inference via convex duality
-
Ed. G. Lugosi and H. U. Simon, Berlin: Springer
-
ALTUN, Y. & SMOLA, A. (2006). Unifying divergence minimization and statistical inference via convex duality. In Learning Theory: 19th Ann. Conf. Learn. Theory, Ed. G. Lugosi and H. U. Simon, pp. 139-153 Berlin: Springer.
-
(2006)
Learning Theory: 19th Ann. Conf. Learn. Theory
, pp. 139-153
-
-
Altun, Y.1
Smola, A.2
-
2
-
-
0001058475
-
Approximate confidence intervals
-
BARTLETT, M. S. (1953). Approximate confidence intervals. Biometrika 40, 12-19.
-
(1953)
Biometrika
, vol.40
, pp. 12-19
-
-
Bartlett, M.S.1
-
3
-
-
33845678003
-
Regularization in statistics (with discussion)
-
BICKEL, P. & LI, B. (2006). Regularization in statistics (with discussion). Test 15, 271-344.
-
(2006)
Test
, vol.15
, pp. 271-344
-
-
Bickel, P.1
B, L.I.2
-
4
-
-
49949144765
-
A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming
-
BREGMAN, L. M. (1967). A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. 7, 620-631
-
(1967)
USSR Comp. Math. Math. Phys.
, vol.7
, pp. 620-631
-
-
Bregman, L.M.1
-
6
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Am. Statist. Assoc. 81, 461-470
-
(1986)
J. Am. Statist. Assoc.
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
7
-
-
3242708140
-
Least angle regression
-
EFRON, B., HASTIE, T., JOHNSTONE, I., & TIBSHIRANI, R. (2004). Least angle regression. Ann. Statist. 32, 407-499
-
(2004)
Ann. Statist.
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
8
-
-
1542784498
-
Variable selection via nonconcave penalized likelihood and its oracle properties
-
FAN, J. & LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-1360
-
(2001)
J. Am. Statist. Assoc.
, vol.96
, pp. 1348-1360
-
-
Fan, J.1
R, L.I.2
-
9
-
-
24344502730
-
Nonconcave penalized likelihood with a diverging number of parameters
-
FAN, J. & PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32, 928-961
-
(2004)
Ann. Statist.
, vol.32
, pp. 928-961
-
-
Fan, J.1
Peng, H.2
-
10
-
-
0004236492
-
-
3rd ed. Baltimore, MD: Johns Hopkins University Press
-
GOLUB, G. H. & VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press.
-
(1996)
Matrix Computations
-
-
Golub, G.H.1
Van Loan, C.F.2
-
11
-
-
6344274901
-
Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory
-
GRÜNWALD, P. D. & DAWID, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Ann. Statist. 32, 1367-1433
-
(2004)
Ann. Statist.
, vol.32
, pp. 1367-1433
-
-
Grünwald, P.D.1
Dawid, A.P.2
-
12
-
-
0031333560
-
A supervised machine learning algorithm for arrhythmia analysis
-
GÜVENIR, H. A.,ACAR, B.,DEMIRöZ, G. & ÇEKIN, A. (1997). A supervised machine learning algorithm for arrhythmia analysis. Comp. Cardiol. 24, 433-436
-
(1997)
Comp. Cardiol.
, vol.24
, pp. 433-436
-
-
Güvenir, H.A.1
Acar, B.2
Demiröz, G.3
Çekin, A.4
-
14
-
-
51049096710
-
Adaptive lasso for sparse high-dimensional regression models
-
HUANG, J.,MA, S. G. & ZHANG, C. H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-1618
-
(2008)
Statist. Sinica
, vol.18
, pp. 1603-1618
-
-
Huang, J.1
Ma, S.G.2
Zhang, C.H.3
-
16
-
-
0034287156
-
Asymptotics for lasso-type estimators
-
KNIGHT, K. & FU, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-1378
-
(2000)
Ann. Statist.
, vol.28
, pp. 1356-1378
-
-
Knight, K.1
J, F.U.W.2
-
18
-
-
0033280975
-
Additive models, boosting, and inference for generalized divergences
-
New York: ACM Press
-
LAFFERTY, J. (1999). Additive models, boosting, and inference for generalized divergences. In Proc. 12th Ann. Conf. Comp. Learn. Theory, pp. 125-133 New York: ACM Press.
-
(1999)
Proc. 12th Ann. Conf. Comp. Learn. Theory
, pp. 125-133
-
-
Lafferty, J.1
-
19
-
-
0001898235
-
Quasi-likelihood functions
-
MCCULLAGH, P. (1983). Quasi-likelihood functions. Ann. Statist. 11, 59-67.
-
(1983)
Ann. Statist.
, vol.11
, pp. 59-67
-
-
McCullagh, P.1
-
20
-
-
33747163541
-
High dimensional graphs and variable selection with the lasso
-
MEINSHAUSEN, N. & BUHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-1462
-
(2006)
Ann. Statist.
, vol.34
, pp. 1436-1462
-
-
Meinshausen, N.1
Buhlmann, P.2
-
21
-
-
34548452938
-
Piecewise linear regularized solution paths
-
ROSSET, S. & ZHU, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35, 1012-1030
-
(2007)
Ann. Statist.
, vol.35
, pp. 1012-1030
-
-
Rosset, S.1
Zhu, J.2
-
22
-
-
0242679446
-
On Ψ-learning
-
SHEN, X., TSENG, G. C., ZHANG, X. & WONG, W. H. (2003). On Ψ-learning. J. Am. Statist. Assoc. 98, 724-734
-
(2003)
J. Am. Statist. Assoc.
, vol.98
, pp. 724-734
-
-
Shen, X.1
Tseng, G.C.2
Zhang, X.3
Wong, W.H.4
-
23
-
-
0346706335
-
Modeling gene expression measurement error: A quasi-likelihood approach
-
STRIMMER,K. (2003).Modeling gene expression measurement error: a quasi-likelihood approach.BMCBioinformatics 4, 10.
-
(2003)
BMCBioinformatics
, vol.4
, pp. 10
-
-
Strimmer, K.1
-
24
-
-
0001287271
-
Regression shrinkage and selection via the lasso
-
TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-288
-
(1996)
J. R. Statist. Soc. B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
27
-
-
0016335739
-
Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
-
WEDDERBURN, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-447
-
(1974)
Biometrika
, vol.61
, pp. 439-447
-
-
Wedderburn, R.W.M.1
-
28
-
-
74049108277
-
New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation
-
ZHANG, C. M., JIANG, Y. & SHANG, Z. (2009). New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation. Can. J. Statist. 37, 119-139
-
(2009)
Can. J. Statist.
, vol.37
, pp. 119-139
-
-
Zhang, C.M.1
Jiang, Y.2
Shang, Z.3
-
29
-
-
77955860912
-
Regularized estimation of hemodynamic response function for fMRI data
-
ZHANG, C. M. & ZHANG, Z. J. (2010). Regularized estimation of hemodynamic response function for fMRI data. Statist. Interface 3, 15-32.
-
(2010)
Statist. Interface
, vol.3
, pp. 15-32
-
-
Zhang, C.M.1
Zhang, Z.J.2
-
30
-
-
33845263263
-
On model selection consistency of lasso
-
ZHAO, P. & YU, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541-2567
-
(2006)
J. Mach. Learn. Res.
, vol.7
, pp. 2541-2567
-
-
Zhao, P.1
B, Y.U.2
-
31
-
-
33846114377
-
The adaptive lasso and its oracle properties
-
ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-1429
-
(2006)
J. Am. Statist. Assoc.
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
|