메뉴 건너뛰기




Volumn 97, Issue 3, 2010, Pages 551-566

Penalized Bregman divergence for large-dimensional regression and classification

Author keywords

Consistency; Divergence minimization; Exponential family; Loss function; Optimal Bayes rule; Oracle property; Quasilikelihood

Indexed keywords


EID: 77955858059     PISSN: 00063444     EISSN: 14643510     Source Type: Journal    
DOI: 10.1093/biomet/asq033     Document Type: Article
Times cited : (27)

References (31)
  • 1
    • 33746060884 scopus 로고    scopus 로고
    • Unifying divergence minimization and statistical inference via convex duality
    • Ed. G. Lugosi and H. U. Simon, Berlin: Springer
    • ALTUN, Y. & SMOLA, A. (2006). Unifying divergence minimization and statistical inference via convex duality. In Learning Theory: 19th Ann. Conf. Learn. Theory, Ed. G. Lugosi and H. U. Simon, pp. 139-153 Berlin: Springer.
    • (2006) Learning Theory: 19th Ann. Conf. Learn. Theory , pp. 139-153
    • Altun, Y.1    Smola, A.2
  • 2
    • 0001058475 scopus 로고
    • Approximate confidence intervals
    • BARTLETT, M. S. (1953). Approximate confidence intervals. Biometrika 40, 12-19.
    • (1953) Biometrika , vol.40 , pp. 12-19
    • Bartlett, M.S.1
  • 3
    • 33845678003 scopus 로고    scopus 로고
    • Regularization in statistics (with discussion)
    • BICKEL, P. & LI, B. (2006). Regularization in statistics (with discussion). Test 15, 271-344.
    • (2006) Test , vol.15 , pp. 271-344
    • Bickel, P.1    B, L.I.2
  • 4
    • 49949144765 scopus 로고
    • A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming
    • BREGMAN, L. M. (1967). A relaxation method of finding a common point of convex sets and its application to the solution of problems in convex programming. USSR Comp. Math. Math. Phys. 7, 620-631
    • (1967) USSR Comp. Math. Math. Phys. , vol.7 , pp. 620-631
    • Bregman, L.M.1
  • 6
    • 80053264999 scopus 로고
    • How biased is the apparent error rate of a prediction rule?
    • EFRON, B. (1986). How biased is the apparent error rate of a prediction rule? J. Am. Statist. Assoc. 81, 461-470
    • (1986) J. Am. Statist. Assoc. , vol.81 , pp. 461-470
    • Efron, B.1
  • 8
    • 1542784498 scopus 로고    scopus 로고
    • Variable selection via nonconcave penalized likelihood and its oracle properties
    • FAN, J. & LI, R. (2001). Variable selection via nonconcave penalized likelihood and its oracle properties. J. Am. Statist. Assoc. 96, 1348-1360
    • (2001) J. Am. Statist. Assoc. , vol.96 , pp. 1348-1360
    • Fan, J.1    R, L.I.2
  • 9
    • 24344502730 scopus 로고    scopus 로고
    • Nonconcave penalized likelihood with a diverging number of parameters
    • FAN, J. & PENG, H. (2004). Nonconcave penalized likelihood with a diverging number of parameters. Ann. Statist. 32, 928-961
    • (2004) Ann. Statist. , vol.32 , pp. 928-961
    • Fan, J.1    Peng, H.2
  • 10
    • 0004236492 scopus 로고    scopus 로고
    • 3rd ed. Baltimore, MD: Johns Hopkins University Press
    • GOLUB, G. H. & VAN LOAN, C. F. (1996). Matrix Computations, 3rd ed. Baltimore, MD: Johns Hopkins University Press.
    • (1996) Matrix Computations
    • Golub, G.H.1    Van Loan, C.F.2
  • 11
    • 6344274901 scopus 로고    scopus 로고
    • Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory
    • GRÜNWALD, P. D. & DAWID, A. P. (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Ann. Statist. 32, 1367-1433
    • (2004) Ann. Statist. , vol.32 , pp. 1367-1433
    • Grünwald, P.D.1    Dawid, A.P.2
  • 12
    • 0031333560 scopus 로고    scopus 로고
    • A supervised machine learning algorithm for arrhythmia analysis
    • GÜVENIR, H. A.,ACAR, B.,DEMIRöZ, G. & ÇEKIN, A. (1997). A supervised machine learning algorithm for arrhythmia analysis. Comp. Cardiol. 24, 433-436
    • (1997) Comp. Cardiol. , vol.24 , pp. 433-436
    • Güvenir, H.A.1    Acar, B.2    Demiröz, G.3    Çekin, A.4
  • 14
    • 51049096710 scopus 로고    scopus 로고
    • Adaptive lasso for sparse high-dimensional regression models
    • HUANG, J.,MA, S. G. & ZHANG, C. H. (2008). Adaptive lasso for sparse high-dimensional regression models. Statist. Sinica 18, 1603-1618
    • (2008) Statist. Sinica , vol.18 , pp. 1603-1618
    • Huang, J.1    Ma, S.G.2    Zhang, C.H.3
  • 16
    • 0034287156 scopus 로고    scopus 로고
    • Asymptotics for lasso-type estimators
    • KNIGHT, K. & FU, W. J. (2000). Asymptotics for lasso-type estimators. Ann. Statist. 28, 1356-1378
    • (2000) Ann. Statist. , vol.28 , pp. 1356-1378
    • Knight, K.1    J, F.U.W.2
  • 18
    • 0033280975 scopus 로고    scopus 로고
    • Additive models, boosting, and inference for generalized divergences
    • New York: ACM Press
    • LAFFERTY, J. (1999). Additive models, boosting, and inference for generalized divergences. In Proc. 12th Ann. Conf. Comp. Learn. Theory, pp. 125-133 New York: ACM Press.
    • (1999) Proc. 12th Ann. Conf. Comp. Learn. Theory , pp. 125-133
    • Lafferty, J.1
  • 19
    • 0001898235 scopus 로고
    • Quasi-likelihood functions
    • MCCULLAGH, P. (1983). Quasi-likelihood functions. Ann. Statist. 11, 59-67.
    • (1983) Ann. Statist. , vol.11 , pp. 59-67
    • McCullagh, P.1
  • 20
    • 33747163541 scopus 로고    scopus 로고
    • High dimensional graphs and variable selection with the lasso
    • MEINSHAUSEN, N. & BUHLMANN, P. (2006). High dimensional graphs and variable selection with the lasso. Ann. Statist. 34, 1436-1462
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Buhlmann, P.2
  • 21
    • 34548452938 scopus 로고    scopus 로고
    • Piecewise linear regularized solution paths
    • ROSSET, S. & ZHU, J. (2007). Piecewise linear regularized solution paths. Ann. Statist. 35, 1012-1030
    • (2007) Ann. Statist. , vol.35 , pp. 1012-1030
    • Rosset, S.1    Zhu, J.2
  • 23
    • 0346706335 scopus 로고    scopus 로고
    • Modeling gene expression measurement error: A quasi-likelihood approach
    • STRIMMER,K. (2003).Modeling gene expression measurement error: a quasi-likelihood approach.BMCBioinformatics 4, 10.
    • (2003) BMCBioinformatics , vol.4 , pp. 10
    • Strimmer, K.1
  • 24
    • 0001287271 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • TIBSHIRANI, R. (1996). Regression shrinkage and selection via the lasso. J. R. Statist. Soc. B 58, 267-288
    • (1996) J. R. Statist. Soc. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 27
    • 0016335739 scopus 로고
    • Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
    • WEDDERBURN, R.W.M. (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika 61, 439-447
    • (1974) Biometrika , vol.61 , pp. 439-447
    • Wedderburn, R.W.M.1
  • 28
    • 74049108277 scopus 로고    scopus 로고
    • New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation
    • ZHANG, C. M., JIANG, Y. & SHANG, Z. (2009). New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation. Can. J. Statist. 37, 119-139
    • (2009) Can. J. Statist. , vol.37 , pp. 119-139
    • Zhang, C.M.1    Jiang, Y.2    Shang, Z.3
  • 29
    • 77955860912 scopus 로고    scopus 로고
    • Regularized estimation of hemodynamic response function for fMRI data
    • ZHANG, C. M. & ZHANG, Z. J. (2010). Regularized estimation of hemodynamic response function for fMRI data. Statist. Interface 3, 15-32.
    • (2010) Statist. Interface , vol.3 , pp. 15-32
    • Zhang, C.M.1    Zhang, Z.J.2
  • 30
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of lasso
    • ZHAO, P. & YU, B. (2006). On model selection consistency of lasso. J. Mach. Learn. Res. 7, 2541-2567
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 2541-2567
    • Zhao, P.1    B, Y.U.2
  • 31
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive lasso and its oracle properties
    • ZOU, H. (2006). The adaptive lasso and its oracle properties. J. Am. Statist. Assoc. 101, 1418-1429
    • (2006) J. Am. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.