-
2
-
-
0035370926
-
Relative loss bounds for on-line density estimation with the exponential family of distributions
-
K. S. Azoury & M. K. Warmuth (2001). Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning, 43, 211-246.
-
(2001)
Machine Learning
, vol.43
, pp. 211-246
-
-
Azoury, K.S.1
Warmuth, M.K.2
-
3
-
-
23744473964
-
On the optimality of conditional expectation as a Bregman predictor
-
A. Banerjee, X. Guo & H. Wang (2005). On the optimality of conditional expectation as a Bregman predictor. IEEE Transactions on Information Theory, 51, 2664-2669.
-
(2005)
Ieee Transactions On Information Theory
, vol.51
, pp. 2664-2669
-
-
Banerjee, A.1
Guo, X.2
Wang, H.3
-
4
-
-
49949144765
-
A relaxation method of finding a common point of convex set sand its application to the solution of problems in convex programming
-
L.M. Brègman (1967). A relaxation method of finding a common point of convex set sand its application to the solution of problems in convex programming. U.S.S.R. Computational Mathematics and Mathematical Physics, 7, 620-631.
-
(1967)
U.s.s.r. Computational Mathematics and Mathematical Physics
, vol.7
, pp. 620-631
-
-
Brègman, L.M.1
-
5
-
-
0346786584
-
Arching classifiers (with discussion)
-
L. Breiman (1998). Arching classifiers (with discussion). Annals of Statistics, 26, 801-824.
-
(1998)
Annals of Statistics
, vol.26
, pp. 801-824
-
-
Breiman, L.1
-
7
-
-
80053264999
-
How biased is the apparent error rate of a prediction rule?
-
B. Efron (1986). How biased is the apparent error rate of a prediction rule? Journal of American Statistical Association, 81, 461-470.
-
(1986)
Journal of American Statistical Association
, vol.81
, pp. 461-470
-
-
Efron, B.1
-
8
-
-
4944239996
-
The estimation of prediction error: Covariance penalties and cross-validation (with discussion)
-
B. Efron (2004). The estimation of prediction error: covariance penalties and cross-validation (with discussion). Journal of American Statistical Association, 99, 619-642.
-
(2004)
Journal of American Statistical Association
, vol.99
, pp. 619-642
-
-
Efron, B.1
-
10
-
-
0031211090
-
A decision-theoretic generalization of on-line learning and an application to boosting
-
Y. Freund & R. E. Schapire (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of Computer and System Sciences, 55, 119-139.
-
(1997)
Journal of Computer and System Sciences
, vol.55
, pp. 119-139
-
-
Freund, Y.1
Schapire, R.E.2
-
11
-
-
21744462998
-
On bias, variance, 0/1-loss, and the curse-of-dimensionality
-
J. Friedman (1997). On bias, variance, 0/1-loss, and the curse-of-dimensionality. Journal of Data Mining and Knowledge Discovery, 1, 55-77.
-
(1997)
Journal of Data Mining and Knowledge Discovery
, vol.1
, pp. 55-77
-
-
Friedman, J.1
-
12
-
-
0034164230
-
Additive logistic regression: A statistical view of boosting (with discussion)
-
J. Friedman, T. Hastie & R. Tibshirani (2000). Additive logistic regression: a statistical view of boosting (with discussion). Annals of Statistics, 28, 337-407.
-
(2000)
Annals of Statistics
, vol.28
, pp. 337-407
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
13
-
-
6344274901
-
Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory
-
P. D. Grünwald & A. P. Dawid (2004). Game theory, maximum entropy, minimum discrepancy and robust Bayesian decision theory. Annals of Statistics, 32, 1367-1433.
-
(2004)
Annals of Statistics
, vol.32
, pp. 1367-1433
-
-
Grünwald, P.D.1
Dawid, A.P.2
-
14
-
-
0001257006
-
Varying-coefficient models (with discussion)
-
T. J. Hastie & R. J. Tibshirani, (1993). Varying-coefficient models (with discussion), Journal of the Royal Statistical Society, Series B, 55, 757-796.
-
(1993)
Journal of The Royal Statistical Society, Series B
, vol.55
, pp. 757-796
-
-
Hastie, T.J.1
Tibshirani, R.J.2
-
16
-
-
0033280350
-
-
Proceedings of the Twelfth Annual Conference on Computational Learning Theory, Santa Cruz, CA. ACM Press, New York, NY
-
J. Kivinen & M. K. Warmuth (1999). Boosting as entropy projection. Proceedings of the Twelfth Annual Conference on Computational Learning Theory, Santa Cruz, CA. ACM Press, New York, NY, pp. 134-144.
-
(1999)
Boosting As Entropy Projection
, pp. 134-144
-
-
Kivinen, J.1
Warmuth, M.K.2
-
18
-
-
0033280975
-
-
Proceedings of the TwelfthAnnualConferenceonComputationalLearningTheory,SantaCruz,CA.ACMPress,NewYork, NY
-
J. Lafferty (1999). Additive models, boosting, and inference for generalized divergences. Proceedings of the TwelfthAnnualConferenceonComputationalLearningTheory,SantaCruz,CA.ACMPress,NewYork, NY, pp. 125-133.
-
(1999)
Additive Models, Boosting, and Inference For Generalized Divergences
, pp. 125-133
-
-
Lafferty, J.1
-
21
-
-
0242679446
-
On ψ-learning
-
X. Shen, G. C. Tseng, X. Zhang & W. H. Wong (2003). On ψ-learning. Journal of American Statistical Association, 98, 724-734.
-
(2003)
Journal of American Statistical Association
, vol.98
, pp. 724-734
-
-
Shen, X.1
Tseng, G.C.2
Zhang, X.3
Wong, W.H.4
-
24
-
-
0016335739
-
Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method
-
R. W. M. Wedderburn (1974). Quasi-likelihood functions, generalized linear models, and the Gauss-Newton method. Biometrika, 61, 439-447.
-
(1974)
Biometrika
, vol.61
, pp. 439-447
-
-
Wedderburn, R.W.M.1
-
25
-
-
74049143821
-
-
Technical Report #1127, Department of Statistics, University of Wisconsin, Madison, WI
-
C. M. Zhang, Y. Jiang & Z. Shang (2007). New aspects of Bregman divergence in regression and classification with parametric and nonparametric estimation. Technical Report #1127, Department of Statistics, University of Wisconsin, Madison, WI.
-
(2007)
New Aspects of Bregman Divergence In Regression and Classification With Parametric and Nonparametric Estimation
-
-
Zhang, C.M.1
Jiang, Y.2
Shang, Z.3
|