메뉴 건너뛰기




Volumn 4, Issue 2, 2010, Pages 89-109

A review of robust clustering methods

Author keywords

Clustering; Model based clustering; Robustness; Trimming

Indexed keywords

CLUSTERING ALGORITHMS; TRIMMING;

EID: 77955847751     PISSN: 18625347     EISSN: 18625355     Source Type: Journal    
DOI: 10.1007/s11634-010-0064-5     Document Type: Article
Times cited : (163)

References (77)
  • 1
    • 34247127902 scopus 로고    scopus 로고
    • Exploratory tools for clustering multivariate data
    • Atkinson AC, Riani M (2007) Exploratory tools for clustering multivariate data. Comput Stat Data Anal 52: 272-285.
    • (2007) Comput Stat Data Anal , vol.52 , pp. 272-285
    • Atkinson, A.C.1    Riani, M.2
  • 3
    • 85012832118 scopus 로고    scopus 로고
    • Atkinson AC, Riani M, Cerioli A (2006) Random start forward searches with envelopes for detecting clusters in multivariate data. In: Zani S, Cerioli A, Riani M, Vichi M (eds) Data analysis, classification and the forward search, pp 163-172.
  • 4
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield JD, Raftery AE (1993) Model-based Gaussian and non-Gaussian clustering. Biometrics 49: 803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.E.2
  • 5
    • 0002757023 scopus 로고    scopus 로고
    • Probability models and hypotheses testing in partitioning cluster analysis
    • P. Arabie, L. J. Hubert, and G. SoeteDe (Eds.), River Edge: World Scientific
    • Bock H-H (1996a) Probability models and hypotheses testing in partitioning cluster analysis. In: Arabie P, Hubert LJ, De Soete G (eds) Clustering and classification. World Scientific, River Edge, pp 377-453.
    • (1996) Clustering and Classification , pp. 377-453
    • Bock, H.-H.1
  • 6
    • 0030289011 scopus 로고    scopus 로고
    • Probabilistic models in cluster analysis
    • Bock H-H (1996b) Probabilistic models in cluster analysis. Comput Stat Data Anal 23: 5-28.
    • (1996) Comput Stat Data Anal , vol.23 , pp. 5-28
    • Bock, H.-H.1
  • 7
    • 77955848835 scopus 로고
    • Large-sample results for optimization-based clustering methods
    • Bryant PG (1991) Large-sample results for optimization-based clustering methods. Comput Stat Data Anal 23: 5-28.
    • (1991) Comput Stat Data Anal , vol.23 , pp. 5-28
    • Bryant, P.G.1
  • 8
    • 0032375671 scopus 로고    scopus 로고
    • Nearest neighbor clutter removal for estimating features in spatial point processes
    • Byers SD, Raftery AE (1998) Nearest neighbor clutter removal for estimating features in spatial point processes. J Am Stat Assoc 93: 577-584.
    • (1998) J Am Stat Assoc , vol.93 , pp. 577-584
    • Byers, S.D.1    Raftery, A.E.2
  • 9
    • 0001626339 scopus 로고
    • Classification EM algorithm for clustering and two stochastic versions
    • Celeux G, Govaert A (1992a) Classification EM algorithm for clustering and two stochastic versions. Comput Stat Data Anal 13: 315-332.
    • (1992) Comput Stat Data Anal , vol.13 , pp. 315-332
    • Celeux, G.1    Govaert, A.2
  • 10
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux G, Govaert A (1992b) Gaussian parsimonious clustering models. Pattern Recognit 28: 781-793.
    • (1992) Pattern Recognit , vol.28 , pp. 781-793
    • Celeux, G.1    Govaert, A.2
  • 11
    • 85012856399 scopus 로고    scopus 로고
    • Cerioli A, Riani M, Atkinson AC (2006) Robust classification with categorical variables. In: Rizzi A, Vichi M (eds) Proceedings in computational statistics, pp 507-519.
  • 14
    • 0031493778 scopus 로고    scopus 로고
    • Trimmed k-means: An attempt to robustify quantizers
    • Cuesta-Albertos JA, Gordaliza A, Matrán C (1997) Trimmed k-means: an attempt to robustify quantizers. Ann Stat 25: 553-576.
    • (1997) Ann Stat , vol.25 , pp. 553-576
    • Cuesta-Albertos, J.A.1    Gordaliza, A.2    Matrán, C.3
  • 17
    • 47649122556 scopus 로고    scopus 로고
    • Robust estimation in the normal mixture model based on robust clustering
    • Cuesta-Albertos JA, Matran C, Mayo-Iscar A (2008) Robust estimation in the normal mixture model based on robust clustering. J R Stat Soc Ser B 70: 779-802.
    • (2008) J R Stat Soc Ser B , vol.70 , pp. 779-802
    • Cuesta-Albertos, J.A.1    Matran, C.2    Mayo-Iscar, A.3
  • 18
    • 0035963461 scopus 로고    scopus 로고
    • Cluster analysis: A further approach based on density estimation
    • Cuevas A, Febrero M, Fraiman R (2001) Cluster analysis: a further approach based on density estimation. Comput Stat Data Anal 36: 441-459.
    • (2001) Comput Stat Data Anal , vol.36 , pp. 441-459
    • Cuevas, A.1    Febrero, M.2    Fraiman, R.3
  • 19
    • 0032337237 scopus 로고    scopus 로고
    • Detecting features in spatial point processes with clutter via model-based clustering
    • Dasgupta A, Raftery AE (1998) Detecting features in spatial point processes with clutter via model-based clustering. J Am Stat Assoc 93: 294-302.
    • (1998) J Am Stat Assoc , vol.93 , pp. 294-302
    • Dasgupta, A.1    Raftery, A.E.2
  • 21
    • 84945952294 scopus 로고
    • The identification of multiple outliers
    • Davies PL, Gather U (1993) The identification of multiple outliers. J Am Stat Assoc 88: 782-801.
    • (1993) J Am Stat Assoc , vol.88 , pp. 782-801
    • Davies, P.L.1    Gather, U.2
  • 22
    • 38549090693 scopus 로고    scopus 로고
    • Robust clustering in high dimensional data using statistical depths
    • Ding Y, Dang X, Peng H, Wilkins D (2007) Robust clustering in high dimensional data using statistical depths. BMC Bioinformatics 8(Suppl 7): S8.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL. 7
    • Ding, Y.1    Dang, X.2    Peng, H.3    Wilkins, D.4
  • 23
    • 0002231562 scopus 로고
    • The notion of breakdown point
    • P. J. Bickel, K. Doksum, and J. L. HodgesJr (Eds.), Belmont: Wadsworth
    • Donoho DL, Huber PJ (1983) The notion of breakdown point. In: Bickel PJ, Doksum K, Hodges JL Jr (eds) A Festschrift for Erich L. Lehmann. Wadsworth, Belmont, pp 157-184.
    • (1983) A Festschrift for Erich L. Lehmann , pp. 157-184
    • Donoho, D.L.1    Huber, P.J.2
  • 24
    • 3543126520 scopus 로고    scopus 로고
    • Fast and robust general purpose clustering algorithms
    • Estivill-Castro V, Yang J (2004) Fast and robust general purpose clustering algorithms. Data Min Knowl Discov 8: 127-150.
    • (2004) Data Min Knowl Discov , vol.8 , pp. 127-150
    • Estivill-Castro, V.1    Yang, J.2
  • 25
    • 0003578015 scopus 로고
    • London: Heinemann Education Books
    • Everitt BS (1977) Cluster analysis. Heinemann Education Books, London.
    • (1977) Cluster Analysis
    • Everitt, B.S.1
  • 27
    • 0000014486 scopus 로고
    • Cluster analysis of multivariate data: Efficiency versus interpreability of classifications
    • Forgy E (1965) Cluster analysis of multivariate data: efficiency versus interpreability of classifications. Biometrics 21: 768.
    • (1965) Biometrics , vol.21 , pp. 768
    • Forgy, E.1
  • 28
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering methods? Answers via model-based cluster analysis
    • Fraley C, Raftery AE (1998) How many clusters? Which clustering methods? Answers via model-based cluster analysis. Comput J 41: 578-588.
    • (1998) Comput J , vol.41 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 29
    • 34247969087 scopus 로고
    • On some invariant criterion for grouping data
    • Friedman HP, Rubin J (1967) On some invariant criterion for grouping data. J Am Stat Assoc 63: 1159-1178.
    • (1967) J Am Stat Assoc , vol.63 , pp. 1159-1178
    • Friedman, H.P.1    Rubin, J.2
  • 30
    • 34147101277 scopus 로고    scopus 로고
    • Maximum likelihood clustering with outliers
    • K. Jajuga, A. Sokolowski, and H. H. Bock (Eds.), Berlin: Springer-Verlag
    • Gallegos MT (2002) Maximum likelihood clustering with outliers. In: Jajuga K, Sokolowski A, Bock HH (eds) Classification, clustering and data analysis: recent advances and applications. Springer-Verlag, Berlin, pp 247-255.
    • (2002) Classification, Clustering and Data Analysis: Recent Advances and Applications , pp. 247-255
    • Gallegos, M.T.1
  • 31
    • 18444366492 scopus 로고    scopus 로고
    • A robust method for cluster analysis
    • Gallegos MT, Ritter G (2005) A robust method for cluster analysis. Ann Stat 33: 347-380.
    • (2005) Ann Stat , vol.33 , pp. 347-380
    • Gallegos, M.T.1    Ritter, G.2
  • 32
    • 76149085499 scopus 로고    scopus 로고
    • Trimming algorithms for clustering contaminated grouped data and their robustness
    • Gallegos MT, Ritter G (2009) Trimming algorithms for clustering contaminated grouped data and their robustness. Adv Data Anal Classif 3: 135-167.
    • (2009) Adv Data Anal Classif , vol.3 , pp. 135-167
    • Gallegos, M.T.1    Ritter, G.2
  • 33
    • 1542532405 scopus 로고    scopus 로고
    • Robustness properties of k-means and trimmed k-means
    • García-Escudero LA, Gordaliza A (1999) Robustness properties of k-means and trimmed k-means. J Am Stat Assoc 94: 956-969.
    • (1999) J Am Stat Assoc , vol.94 , pp. 956-969
    • García-Escudero, L.A.1    Gordaliza, A.2
  • 34
    • 24644504141 scopus 로고    scopus 로고
    • Generalized radius processes for elliptically contoured distributions
    • García-Escudero LA, Gordaliza A (2005a) Generalized radius processes for elliptically contoured distributions. J Am Stat Assoc 471: 1036-1045.
    • (2005) J Am Stat Assoc , vol.471 , pp. 1036-1045
    • García-Escudero, L.A.1    Gordaliza, A.2
  • 35
    • 33744726447 scopus 로고    scopus 로고
    • A proposal for robust curve clustering
    • García-Escudero LA, Gordaliza A (2005b) A proposal for robust curve clustering. J Classif 22: 185-201.
    • (2005) J Classif , vol.22 , pp. 185-201
    • García-Escudero, L.A.1    Gordaliza, A.2
  • 36
    • 34147141432 scopus 로고    scopus 로고
    • The importance of the scales in heterogeneous robust clustering
    • García-Escudero LA, Gordaliza A (2007) The importance of the scales in heterogeneous robust clustering. Comput Stat Data Anal 51: 4403-4412.
    • (2007) Comput Stat Data Anal , vol.51 , pp. 4403-4412
    • García-Escudero, L.A.1    Gordaliza, A.2
  • 37
    • 0033248629 scopus 로고    scopus 로고
    • A central limit theorem for multivariate generalized trimmed k-means
    • García-Escudero LA, Gordaliza A, Matrn C (1999) A central limit theorem for multivariate generalized trimmed k-means. Ann Stat 27: 1061-1079.
    • (1999) Ann Stat , vol.27 , pp. 1061-1079
    • García-Escudero, L.A.1    Gordaliza, A.2    Matrn, C.3
  • 41
    • 85012849764 scopus 로고    scopus 로고
    • García-Escudero LA, Gordaliza A, Matrán C, Mayo-Iscar A (2010) Exploring the number of groups in robust model-based clustering. (submitted.) Preprint http://www. eio. uva. es/infor/personas/langel. html.
  • 42
    • 0000836150 scopus 로고
    • Best approximations to random variables based on trimming procedures
    • Gordaliza A (1991) Best approximations to random variables based on trimming procedures. J Approx Theory 64: 162-180.
    • (1991) J Approx Theory , vol.64 , pp. 162-180
    • Gordaliza, A.1
  • 45
    • 0344513198 scopus 로고    scopus 로고
    • Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator
    • Hardin J, Rocke D (2004) Outlier detection in the multiple cluster setting using the minimum covariance determinant estimator. Comput Stat Data Anal 44: 625-638.
    • (2004) Comput Stat Data Anal , vol.44 , pp. 625-638
    • Hardin, J.1    Rocke, D.2
  • 46
    • 0001354471 scopus 로고
    • A constrained formulation of maximum likelihood estimation for normal mixture distributions
    • Hathaway RJ (1985) A constrained formulation of maximum likelihood estimation for normal mixture distributions. Ann Stat 13: 795-800.
    • (1985) Ann Stat , vol.13 , pp. 795-800
    • Hathaway, R.J.1
  • 47
    • 0038454627 scopus 로고    scopus 로고
    • Clusters, outliers, and regression: Fixed point clusters
    • Hennig C (2003) Clusters, outliers, and regression: fixed point clusters. J Multivar Anal 86: 183-212.
    • (2003) J Multivar Anal , vol.86 , pp. 183-212
    • Hennig, C.1
  • 48
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for maximum likelihood-estimators of location-scale mixtures
    • Hennig C (2004) Breakdown points for maximum likelihood-estimators of location-scale mixtures. Ann Stat 32: 1313-1340.
    • (2004) Ann Stat , vol.32 , pp. 1313-1340
    • Hennig, C.1
  • 49
    • 43049147671 scopus 로고    scopus 로고
    • Dissolution point and isolation robustness: Robustness criteria for general cluster analysis methods
    • Hennig C (2008) Dissolution point and isolation robustness: robustness criteria for general cluster analysis methods. J Multivar Anal 99: 1154-1176.
    • (2008) J Multivar Anal , vol.99 , pp. 1154-1176
    • Hennig, C.1
  • 51
    • 0035336998 scopus 로고    scopus 로고
    • Two-phase clustering process for outliers detection
    • Jiang MF, Tseng SS, Su CM (2001) Two-phase clustering process for outliers detection. Pattern Recognit Lett 22: 691-700.
    • (2001) Pattern Recognit Lett , vol.22 , pp. 691-700
    • Jiang, M.F.1    Tseng, S.S.2    Su, C.M.3
  • 53
    • 34548620918 scopus 로고    scopus 로고
    • Scale-invariant clustering with minimum volume ellipsoids
    • Kumar M, Orlin JB (2008) Scale-invariant clustering with minimum volume ellipsoids. Comput Oper Res 35: 1017-1029.
    • (2008) Comput Oper Res , vol.35 , pp. 1017-1029
    • Kumar, M.1    Orlin, J.B.2
  • 54
    • 0033919664 scopus 로고    scopus 로고
    • Mixture models, robustness, and the weighted likelihood methodology
    • Markatou M (2000) Mixture models, robustness, and the weighted likelihood methodology. Biometrics 356: 483-486.
    • (2000) Biometrics , vol.356 , pp. 483-486
    • Markatou, M.1
  • 55
    • 23844486772 scopus 로고    scopus 로고
    • Principal components and orthogonal regression based on robust scales
    • Maronna R (2005) Principal components and orthogonal regression based on robust scales. Technometrics 47: 264-273.
    • (2005) Technometrics , vol.47 , pp. 264-273
    • Maronna, R.1
  • 56
    • 0016203667 scopus 로고
    • Multivariate clustering procedures with variable metrics
    • Maronna R, Jacovkis PM (1974) Multivariate clustering procedures with variable metrics. Biometrics 30: 499-505.
    • (1974) Biometrics , vol.30 , pp. 499-505
    • Maronna, R.1    Jacovkis, P.M.2
  • 59
    • 77955850743 scopus 로고    scopus 로고
    • Robust cluster analysis via mixture models
    • McLachlan GJ, Ng S-K, Bean R (2006) Robust cluster analysis via mixture models. Austrian J Stat 35: 157-174.
    • (2006) Austrian J Stat , vol.35 , pp. 157-174
    • McLachlan, G.J.1    Ng, S.-K.2    Bean, R.3
  • 60
    • 34250115918 scopus 로고
    • An examination of procedures for determining the number of clusters in a data set
    • Milligan GW, Cooper MC (1985) An examination of procedures for determining the number of clusters in a data set. Psychometrika 50: 159-179.
    • (1985) Psychometrika , vol.50 , pp. 159-179
    • Milligan, G.W.1    Cooper, M.C.2
  • 61
    • 0000371878 scopus 로고
    • Excess mass estimates and tests for multimodality
    • Müller DW, Sawitzki G (1991) Excess mass estimates and tests for multimodality. J Am Stat Assoc 86: 738-746.
    • (1991) J Am Stat Assoc , vol.86 , pp. 738-746
    • Müller, D.W.1    Sawitzki, G.2
  • 62
  • 63
    • 76149130045 scopus 로고    scopus 로고
    • New robust dynamic plots for regression mixture detection
    • Perrotta D, Riani M, Torti F (2009) New robust dynamic plots for regression mixture detection. Adv Data Anal Classif 3: 263-279.
    • (2009) Adv Data Anal Classif , vol.3 , pp. 263-279
    • Perrotta, D.1    Riani, M.2    Torti, F.3
  • 64
    • 0001030653 scopus 로고
    • Measuring mass concentrations and estimating density contour clusters: An excess mass approach
    • Polonik W (1995) Measuring mass concentrations and estimating density contour clusters: an excess mass approach. Ann Stat 23: 855-881.
    • (1995) Ann Stat , vol.23 , pp. 855-881
    • Polonik, W.1
  • 65
    • 0030344143 scopus 로고    scopus 로고
    • Identification of outliers in multivariate data
    • Rocke DM, Woodruff DM (1996) Identification of outliers in multivariate data. J Am Stat Assoc 91: 1047-1061.
    • (1996) J Am Stat Assoc , vol.91 , pp. 1047-1061
    • Rocke, D.M.1    Woodruff, D.M.2
  • 66
    • 34147187402 scopus 로고    scopus 로고
    • Computational connections between robust multivariate analysis and clustering
    • W. Härdle, B. Rönz (Eds.), Heidelberg: Physica-Verlag
    • Rocke DM, Woodruff DM (2002) Computational connections between robust multivariate analysis and clustering. In: Härdle W, Rönz B (eds) COMPSTAT 2002 proceedings in computational statistics. Physica-Verlag, Heidelberg, pp 255-260.
    • (2002) COMPSTAT 2002 Proceedings in Computational Statistics , pp. 255-260
    • Rocke, D.M.1    Woodruff, D.M.2
  • 67
    • 0002564033 scopus 로고
    • Multivariate estimation with high breakdown point
    • W. Grossmann, G. Pflug, I. Vincze, and W. Wertz (Eds.), Dordrecht: Reidel
    • Rousseeuw PJ (1985) Multivariate estimation with high breakdown point. In: Grossmann W, Pflug G, Vincze I, Wertz W (eds) Mathematical statistics and applications. Reidel, Dordrecht, pp 283-297.
    • (1985) Mathematical Statistics and Applications , pp. 283-297
    • Rousseeuw, P.J.1
  • 69
    • 0032680362 scopus 로고    scopus 로고
    • A fast algorithm for the minimum covariance determinant estimator
    • Rousseeuw PJ, van Driessen K (1999) A fast algorithm for the minimum covariance determinant estimator. Technometrics 41: 212-223.
    • (1999) Technometrics , vol.41 , pp. 212-223
    • Rousseeuw, P.J.1    van Driessen, K.2
  • 70
    • 4544358803 scopus 로고    scopus 로고
    • An algorithm for positive-breakdown regression based on concentration steps
    • W. Gaul, O. Opitz, and M. Schader (Eds.), New York: Springer Verlag
    • Rousseeuw PJ, van Driessen K (2000) An algorithm for positive-breakdown regression based on concentration steps. In: Gaul W, Opitz O, Schader M (eds) Data analysis: scientific modeling and practical application. Springer Verlag, New York, pp 335-446.
    • (2000) Data Analysis: Scientific Modeling and Practical Application , pp. 335-446
    • Rousseeuw, P.J.1    van Driessen, K.2
  • 71
    • 85012841754 scopus 로고    scopus 로고
    • Santos-Pereira CM, Pires AM (2002) Detection of outliers in multivariate data, a method based on clustering and robust estimators. In: Proceedings in computational statistics, pp 291-296.
  • 72
    • 73149113302 scopus 로고    scopus 로고
    • RelaxMCD: Smooth optimisation for the minimum covariance determinant estimator
    • Schynsa M, Haesbroeck G, Critchley F (2010) RelaxMCD: smooth optimisation for the minimum covariance determinant estimator. Comput Stat Data Anal 54: 843-857.
    • (2010) Comput Stat Data Anal , vol.54 , pp. 843-857
    • Schynsa, M.1    Haesbroeck, G.2    Critchley, F.3
  • 75
    • 0000217783 scopus 로고
    • Integer programming and the theory of grouping
    • Vinod HD (1969) Integer programming and the theory of grouping. J Am Stat Assoc 64: 506-519.
    • (1969) J Am Stat Assoc , vol.64 , pp. 506-519
    • Vinod, H.D.1
  • 76
    • 64849112891 scopus 로고    scopus 로고
    • Diagnosing multivariate outliers detected by robust estimators
    • Willems G, Joe H, Zamar R (2009) Diagnosing multivariate outliers detected by robust estimators. J Comput Graph Stat 18: 73-91.
    • (2009) J Comput Graph Stat , vol.18 , pp. 73-91
    • Willems, G.1    Joe, H.2    Zamar, R.3
  • 77
    • 4444358559 scopus 로고    scopus 로고
    • Experiments with, and on, algorithms for maximum likelihood clustering
    • Woodruff DL, Reiners T (2004) Experiments with, and on, algorithms for maximum likelihood clustering. Comput Stat Data Anal 47: 237-253.
    • (2004) Comput Stat Data Anal , vol.47 , pp. 237-253
    • Woodruff, D.L.1    Reiners, T.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.