메뉴 건너뛰기




Volumn 36, Issue 3, 2008, Pages 1324-1345

A general trimming approach to robust cluster analysis

Author keywords

Asymptotics; Cluster analysis; Dykstra's algorithm; EM algorithm; Fast MCD algorithm; Robustness; Trimmed k means; Trimming

Indexed keywords


EID: 51049119219     PISSN: 00905364     EISSN: None     Source Type: Journal    
DOI: 10.1214/07-AOS515     Document Type: Article
Times cited : (193)

References (28)
  • 1
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • MR1243494
    • BANFIELD, J. D. and RAFTERY, A. E. (1993). Model-based Gaussian and non-Gaussian clustering. Biometrics 49 803-821. MR1243494
    • (1993) Biometrics , vol.49 , pp. 803-821
    • BANFIELD, J.D.1    RAFTERY, A.E.2
  • 2
    • 14044279891 scopus 로고    scopus 로고
    • Clustering methods: From classical models to new approaches
    • BOCK. H.-H. (2002). Clustering methods: From classical models to new approaches. Statistics in Transition5725-758.
    • (2002) Statistics in Transition , vol.5 , pp. 725-758
    • BOCK, H.-H.1
  • 3
    • 0001626339 scopus 로고
    • A classification EM algorithm for clustering and two stochastic versions
    • MR1192205
    • CELEUX, G. and GOVAERT, A. (1992). A classification EM algorithm for clustering and two stochastic versions. Comput. Statist. Data Anal. 14 315-332. MR1192205
    • (1992) Comput. Statist. Data Anal , vol.14 , pp. 315-332
    • CELEUX, G.1    GOVAERT, A.2
  • 4
    • 0031493778 scopus 로고    scopus 로고
    • Trimmed it -means: An attempt to robustify quantizers
    • MR1439314
    • CUESTA-ALBERTOS, J. A.. GORDALIZA, A. and MATRÁN, C. (1997). Trimmed it -means: An attempt to robustify quantizers. Ann. Statist. 25 553-576. MR1439314
    • (1997) Ann. Statist , vol.25 , pp. 553-576
    • CUESTA-ALBERTOS, J.A.1    GORDALIZA, A.2    MATRÁN, C.3
  • 5
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm
    • MR0501537
    • DEMPSTER, A., LAIRD, N. and RUBIN, D. (1977). Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 1-38. MR0501537
    • (1977) J. Roy. Statist. Soc. Ser. B , vol.39 , pp. 1-38
    • DEMPSTER, A.1    LAIRD, N.2    RUBIN, D.3
  • 6
    • 84948499836 scopus 로고
    • An algorithm for restricted least squares regression
    • MR0727568
    • DYKSTRA. R. L. (1983). An algorithm for restricted least squares regression. J. Amer. Statist. Assoc.78837-842. MR0727568
    • (1983) J. Amer. Statist. Assoc , vol.78 , pp. 837-842
    • DYKSTRA, R.L.1
  • 8
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • FRALEY, C. and RAFTERY, A. E. (1998). How many clusters? Which clustering method? Answers via model-based cluster analysis. Computer J. 41 578-588.
    • (1998) Computer J , vol.41 , pp. 578-588
    • FRALEY, C.1    RAFTERY, A.E.2
  • 10
    • 51049124371 scopus 로고    scopus 로고
    • GALLEGOS, M. T. (2002). Maximum likelihood clustering with outliers. In Classification, Clustering and Data Analysis: Recent Advances and Applications (K. Jajuga, A. Sokolowski and H.-H. Bock, eds.) 247-255. Springer, New York. MR2010460
    • GALLEGOS, M. T. (2002). Maximum likelihood clustering with outliers. In Classification, Clustering and Data Analysis: Recent Advances and Applications (K. Jajuga, A. Sokolowski and H.-H. Bock, eds.) 247-255. Springer, New York. MR2010460
  • 11
    • 18444366492 scopus 로고    scopus 로고
    • A robust method for cluster analysis
    • MR2157806
    • GALLEGOS, M. T. and RITTER, G. (2005). A robust method for cluster analysis. Ann. Statist. 33 347-380. MR2157806
    • (2005) Ann. Statist , vol.33 , pp. 347-380
    • GALLEGOS, M.T.1    RITTER, G.2
  • 12
    • 1542532405 scopus 로고    scopus 로고
    • Robustness properties of k-means and trimmed k-means
    • MR1723291
    • GARCÍA-ESCUDERO, L. A. and GORDALIZA, A. (1999). Robustness properties of k-means and trimmed k-means. J. Amer. Statist. Assoc. 94 956-969. MR1723291
    • (1999) J. Amer. Statist. Assoc , vol.94 , pp. 956-969
    • GARCÍA-ESCUDERO, L.A.1    GORDALIZA, A.2
  • 13
    • 34147141432 scopus 로고    scopus 로고
    • The importance of the scales in heterogeneous robust clustering
    • GARCÍA-ESCUDERO, L. A. and GORDALIZA, A. (2007). The importance of the scales in heterogeneous robust clustering. Comput. Statist. Data Anal. 51 4403-4412.
    • (2007) Comput. Statist. Data Anal , vol.51 , pp. 4403-4412
    • GARCÍA-ESCUDERO, L.A.1    GORDALIZA, A.2
  • 14
    • 0033248629 scopus 로고    scopus 로고
    • A central limit theorem for multivariate generalized trimmed k-means
    • MR 1724041
    • GARCÍA-ESCUDERO, L. A., GORDALIZA, A. and MATRÁN, C. (1999). A central limit theorem for multivariate generalized trimmed k-means. Ann. Statist. 27 1061-1079. MR 1724041
    • (1999) Ann. Statist , vol.27 , pp. 1061-1079
    • GARCÍA-ESCUDERO, L.A.1    GORDALIZA, A.2    MATRÁN, C.3
  • 16
    • 51049108009 scopus 로고    scopus 로고
    • The TCLUST approach to robust cluster analysis
    • Technical report. Available at
    • GARCÍA-ESCUDERO, L. A., GORDALIZA, A., MATRÁN, C. and MAYO-ISCAR, A. (2006). The TCLUST approach to robust cluster analysis. Technical report. Available at http://www.eio.uva.es/inves/grupos/representaciones/trTCLUST.pdf.
    • (2006)
    • GARCÍA-ESCUDERO, L.A.1    GORDALIZA, A.2    MATRÁN, C.3    MAYO-ISCAR, A.4
  • 17
    • 0020826623 scopus 로고
    • A numerically stable dual method for solving strictly convex quadratic programs
    • MR0712108
    • GOLDFARB, D. and IDNANI, A. (1983). A numerically stable dual method for solving strictly convex quadratic programs. Math. Program. 27 1-33. MR0712108
    • (1983) Math. Program , vol.27 , pp. 1-33
    • GOLDFARB, D.1    IDNANI, A.2
  • 18
    • 0001354471 scopus 로고
    • A constrained formulation of maximum likelihood estimation for normal mixture distributions
    • MR0790575
    • HATHAWAY, R. J. (1985). A constrained formulation of maximum likelihood estimation for normal mixture distributions. Ann. Statist. 13 795-800. MR0790575
    • (1985) Ann. Statist , vol.13 , pp. 795-800
    • HATHAWAY, R.J.1
  • 19
    • 24344501318 scopus 로고    scopus 로고
    • Breakdown points for ML estimators of location-scale mixtures
    • MR2089126
    • HENNIG, C. (2004). Breakdown points for ML estimators of location-scale mixtures. Ann. Statist. 32 1313-1340. MR2089126
    • (2004) Ann. Statist , vol.32 , pp. 1313-1340
    • HENNIG, C.1
  • 20
    • 51049108441 scopus 로고    scopus 로고
    • MARDIA. K. V., KENT, J. T. and BIBBY, J. M. (1979). Multivariate Analysis. Academic Press, London. MR0560319
    • MARDIA. K. V., KENT, J. T. and BIBBY, J. M. (1979). Multivariate Analysis. Academic Press, London. MR0560319
  • 21
    • 23844486772 scopus 로고    scopus 로고
    • Principal components and orthogonal regression based on robust scales
    • MR2164700
    • MARONNA, R. (2005). Principal components and orthogonal regression based on robust scales. Technometrics 47 264-273, MR2164700
    • (2005) Technometrics , vol.47 , pp. 264-273
    • MARONNA, R.1
  • 22
    • 0016203667 scopus 로고
    • Multivariate clustering procedures with variable metrics
    • MARONNA, R. and JACOVKIS, P. M. (1974). Multivariate clustering procedures with variable metrics. Biometrics 30 499-505.
    • (1974) Biometrics , vol.30 , pp. 499-505
    • MARONNA, R.1    JACOVKIS, P.M.2
  • 24
    • 51049112565 scopus 로고    scopus 로고
    • PAPADIMITRIOU, C. H. and STEIGLITZ, K. (1982). Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ. MR0663728
    • PAPADIMITRIOU, C. H. and STEIGLITZ, K. (1982). Combinatorial Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cliffs, NJ. MR0663728
  • 25
    • 0032680362 scopus 로고    scopus 로고
    • A fast algorithm for the minimum covariance determinant estimator
    • ROUSSEEUW, P. J. and VAN DRIESSEN, K. (1999). A fast algorithm for the minimum covariance determinant estimator. Technometrics 41 212-223.
    • (1999) Technometrics , vol.41 , pp. 212-223
    • ROUSSEEUW, P.J.1    VAN DRIESSEN, K.2
  • 26
    • 0001340183 scopus 로고
    • Clustering methods based on likelihood ratio criteria
    • SCOTT, A. J. and SYMONS, M. J. (1971). Clustering methods based on likelihood ratio criteria. Biometrics 27 387-397.
    • (1971) Biometrics , vol.27 , pp. 387-397
    • SCOTT, A.J.1    SYMONS, M.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.