메뉴 건너뛰기




Volumn 8, Issue 2, 2004, Pages 127-150

Fast and robust general purpose clustering algorithms

Author keywords

1 median problem; Clustering; Combinatorial optimization; Expectation maximization; k Means; Medoids

Indexed keywords

ALGORITHMS; COMBINATORIAL MATHEMATICS; DATABASE SYSTEMS; KNOWLEDGE ACQUISITION; MARKOV PROCESSES; MATHEMATICAL MODELS; OPTIMIZATION; PROBLEM SOLVING; ROBUSTNESS (CONTROL SYSTEMS); STATISTICAL METHODS;

EID: 3543126520     PISSN: 13845810     EISSN: None     Source Type: Journal    
DOI: 10.1023/B:DAMI.0000015869.08323.b3     Document Type: Article
Times cited : (45)

References (50)
  • 3
    • 70350338835 scopus 로고
    • Gibbs sampling
    • C.R. Rao (Ed.), Amsterdam, North Holland
    • Arnold, S.F. 1993. Gibbs sampling. In Handbook of Statistics 9, C.R. Rao (Ed.), Amsterdam, North Holland, pp. 599-625.
    • (1993) Handbook of Statistics , vol.9 , pp. 599-625
    • Arnold, S.F.1
  • 5
    • 3543120775 scopus 로고
    • Proving geometric algorithm non-solvability: An application of factoring polynomials
    • Bajaj, C. 1986. Proving geometric algorithm non-solvability: An application of factoring polynomials. Journal of Symbolic Computation, 2:99-102.
    • (1986) Journal of Symbolic Computation , vol.2 , pp. 99-102
    • Bajaj, C.1
  • 6
    • 0027453616 scopus 로고
    • Model-based Gaussian and non-Gaussian clustering
    • Banfield, J.D. and Raftery, A.B. 1993. Model-Based Gaussian and non-Gaussian clustering. Biometrics, 49:803-821.
    • (1993) Biometrics , vol.49 , pp. 803-821
    • Banfield, J.D.1    Raftery, A.B.2
  • 14
    • 0029305528 scopus 로고
    • Gaussian parsimonious clustering models
    • Celeux, G. and Govaret, G. 1995. Gaussian parsimonious clustering models. Pattern Recognition, 28(5):781-793.
    • (1995) Pattern Recognition , vol.28 , Issue.5 , pp. 781-793
    • Celeux, G.1    Govaret, G.2
  • 17
    • 84958980429 scopus 로고    scopus 로고
    • Point estimation using the Kullback-Leibler loss function and MML
    • Proceedings of Second Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD-98 X. Wu, R. Kotagiri, and K.K. Korb (Eds.), Melbourne, Australia, Springer-Verlag
    • Dowe, D., Baxter, R.A., Oliver, J.J., and Wallace, C. 1998. Point estimation using the Kullback-Leibler loss function and MML. In Proceedings of Second Pacific-Asia Conference on Knowledge Discovery and Data Mining PAKDD-98. X. Wu, R. Kotagiri, and K.K. Korb (Eds.), Melbourne, Australia, Springer-Verlag Lecture Notes in Artificial Intelligence 1394, pp. 87-95.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1394 , pp. 87-95
    • Dowe, D.1    Baxter, R.A.2    Oliver, J.J.3    Wallace, C.4
  • 19
    • 0012834533 scopus 로고    scopus 로고
    • Why so many clustering algorithms - A position paper
    • Estivill-Castro, V. 2002. Why so many clustering algorithms - A position paper. SIGKDD Explorations, 4(1):65-75.
    • (2002) SIGKDD Explorations , vol.4 , Issue.1 , pp. 65-75
    • Estivill-Castro, V.1
  • 20
    • 0012941002 scopus 로고    scopus 로고
    • Robust distance-based clustering with applications to spatial data mining
    • Estivill-Castro, V. and Houle, M.E. 2001. Robust distance-based clustering with applications to spatial data mining. Algorithmica, 30(2):216-242.
    • (2001) Algorithmica , vol.30 , Issue.2 , pp. 216-242
    • Estivill-Castro, V.1    Houle, M.E.2
  • 21
    • 79957944034 scopus 로고    scopus 로고
    • Discovering associations in spatial data - An efficient medoid based approach
    • Proceedings of the 2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-98), X. Wu, R. Kotagiri, and K.K. Korb (Eds.), Melbourne, Australia, Springer-Verlag
    • Estivill-Castro, V. and Murray, A.T. 1998. Discovering associations in spatial data - An efficient medoid based approach. In Proceedings of the 2nd Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD-98), X. Wu, R. Kotagiri, and K.K. Korb (Eds.), Melbourne, Australia, Springer-Verlag, Lecture Notes in Artificial Intelligence 1394, pp. 110-121.
    • (1998) Lecture Notes in Artificial Intelligence , vol.1394 , pp. 110-121
    • Estivill-Castro, V.1    Murray, A.T.2
  • 24
    • 0032269108 scopus 로고    scopus 로고
    • How many clusters? Which clustering method? Answers via model-based cluster analysis
    • Fraley, C. and Raftery, A.E. 1998. How many clusters? which clustering method? answers via model-based cluster analysis. Computer Journal, 41(8):578-588.
    • (1998) Computer Journal , vol.41 , Issue.8 , pp. 578-588
    • Fraley, C.1    Raftery, A.E.2
  • 28
    • 84958035025 scopus 로고    scopus 로고
    • K-means clustering algorithm for categorical attributes
    • Data Warehousing and Knowledge Discovery DaWaK-99, M. Mohania and A.M. Tjoa (Eds.), Florence, Italy. Springer-Verlag
    • Gupta, S.K., Rao, K.S. and Bhatnagar, V. 1999. K-means clustering algorithm for categorical attributes. In Data Warehousing and Knowledge Discovery DaWaK-99, M. Mohania and A.M. Tjoa (Eds.), Florence, Italy. Springer-Verlag Lecture Notes in Computer Science 1676, pp. 203-208.
    • (1999) Lecture Notes in Computer Science , vol.1676 , pp. 203-208
    • Gupta, S.K.1    Rao, K.S.2    Bhatnagar, V.3
  • 29
    • 27144536001 scopus 로고    scopus 로고
    • Extensions to the k-means algorithm for clustering large data sets with categorical values
    • Huang, Z. 1998. Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining and Knowledge Discovery, 2(3):283-304.
    • (1998) Data Mining and Knowledge Discovery , vol.2 , Issue.3 , pp. 283-304
    • Huang, Z.1
  • 30
  • 32
    • 0002818802 scopus 로고
    • On a pair of dual non-linear problems
    • J. Abadie and S. Vajda (Eds.), page Chapter 3, NY, USA. John Wiley & Sons
    • Kuhn, H.W. 1967. On a pair of dual non-linear problems. In J. Abadie and S. Vajda (Eds.), Nonlinear programming, page Chapter 3, NY, USA. John Wiley & Sons.
    • (1967) Nonlinear Programming
    • Kuhn, H.W.1
  • 33
    • 34250438259 scopus 로고
    • A note on Fermat's problem
    • Kuhn, H.W. 1973. A note on Fermat's problem. Mathematical Programming, 4(1):98-107.
    • (1973) Mathematical Programming , vol.4 , Issue.1 , pp. 98-107
    • Kuhn, H.W.1
  • 34
    • 84980123632 scopus 로고
    • An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics
    • Kuhn, H.W. and Kuenne, E. 1962. An efficient algorithm for the numerical solution of the generalized Weber problem in spatial economics. Journal of Regional Science, 4(2):21-33.
    • (1962) Journal of Regional Science , vol.4 , Issue.2 , pp. 21-33
    • Kuhn, H.W.1    Kuenne, E.2
  • 35
    • 0001457509 scopus 로고
    • Some methods for classification and analysis of multivariate observations
    • L. Le Cam and J. Neyman (Eds.)
    • MacQueen, J. 1967. Some methods for classification and analysis of multivariate observations. In 5th Berkley Symposium on Mathematical Statistics and Probability, L. Le Cam and J. Neyman (Eds.), Volume 1, pp. 281-297.
    • (1967) 5th Berkley Symposium on Mathematical Statistics and Probability , vol.1 , pp. 281-297
    • MacQueen, J.1
  • 36
    • 22844453859 scopus 로고    scopus 로고
    • A new modelling technique based on Markov chains to mine behavioral patterns in event based time series
    • Data Warehousing and Knowledge Discovery DaWaK-99, M. Mohania and A.M. Tjoa (Eds.), Florence, Italy. Springer-Verlag
    • Massa, S., Paolucci, M., and Puliafito, P.P. 1999. A new modelling technique based on Markov chains to mine behavioral patterns in event based time series. In Data Warehousing and Knowledge Discovery DaWaK-99, M. Mohania and A.M. Tjoa (Eds.), Florence, Italy. Springer-Verlag Lecture Notes in Computer Science 1676, pp. 331-342.
    • (1999) Lecture Notes in Computer Science , vol.1676 , pp. 331-342
    • Massa, S.1    Paolucci, M.2    Puliafito, P.P.3
  • 37
    • 0001232538 scopus 로고
    • A fast improvement to the EM algorithm in its own terms
    • Meilijson, I. 1989. A fast improvement to the EM algorithm in its own terms. Journal of the Royal Statistical Society B, 51(1):127-138.
    • (1989) Journal of the Royal Statistical Society B , vol.51 , Issue.1 , pp. 127-138
    • Meilijson, I.1
  • 39
    • 0003136237 scopus 로고
    • Efficient and effective clustering methods for spatial data mining
    • J.Bocca, M. Jarke, and C. Zaniolo (Eds.), San Francisco, CA: Santiago, Chile, Morgan Kaufmann Publishers
    • Ng, R.T. and Han, J. 1994. Efficient and effective clustering methods for spatial data mining. In Proceedings of the 20th Conference on Very Large Data Bases (VLDB), J.Bocca, M. Jarke, and C. Zaniolo (Eds.), San Francisco, CA: Santiago, Chile, Morgan Kaufmann Publishers, pp. 144-155.
    • (1994) Proceedings of the 20th Conference on Very Large Data Bases (VLDB) , pp. 144-155
    • Ng, R.T.1    Han, J.2
  • 41
    • 0003150632 scopus 로고
    • A quadratically convergent method for minimizing a sum of Euclidean norms
    • Overton, M.L. 1983. A quadratically convergent method for minimizing a sum of Euclidean norms. Mathematical Programming, 27:34-63.
    • (1983) Mathematical Programming , vol.27 , pp. 34-63
    • Overton, M.L.1
  • 42
    • 3543065894 scopus 로고    scopus 로고
    • A mixed measure formulation of the EM algorithm for huge data set applications
    • L. Billard and N.I. Fisher (Eds.), Sydney, Australia, Interface Foundation of North America
    • Rogers, G.W., Wallet, B.C., and Wegman, E.J. 1997. A mixed measure formulation of the EM algorithm for huge data set applications. In Proceedings of the 28th Symposium on the Interface Between Computer Science and Statistics, L. Billard and N.I. Fisher (Eds.), Sydney, Australia, Interface Foundation of North America, pp. 492-497.
    • (1997) Proceedings of the 28th Symposium on the Interface between Computer Science and Statistics , pp. 492-497
    • Rogers, G.W.1    Wallet, B.C.2    Wegman, E.J.3
  • 45
    • 0003053548 scopus 로고
    • Bayesian computation via the Gibbs sampler and reated Markov chain Monte Carlo methods
    • Smith, A.F.M. and Roberts, G.O. 1993. Bayesian computation via the Gibbs sampler and reated Markov chain Monte Carlo methods. Journal of the Royal Statistical Society B, 55(1):2-23.
    • (1993) Journal of the Royal Statistical Society B , vol.55 , Issue.1 , pp. 2-23
    • Smith, A.F.M.1    Roberts, G.O.2
  • 49
    • 0002728201 scopus 로고
    • The Weber problem: History and perspectives
    • Wesolowsky, G. 1993. The Weber problem: History and perspectives, Location Science, 1:5-23.
    • (1993) Location Science , vol.1 , pp. 5-23
    • Wesolowsky, G.1
  • 50
    • 3543074169 scopus 로고    scopus 로고
    • K-harmonic means - A spatial clustering algorithm with boosting
    • 2007. J. Roddick and K. Hornsby (Eds.), in conjunction with the 4th European Conference on Principles and Practices of Knowledge Discovery and Databases, Lyon, France, 2000, Springer-Verlag Lecture Notes in Artificial Intelligence
    • Zhang, B., Hsu, M., and Dayal, U. 2007. K-harmonic means - a spatial clustering algorithm with boosting. In J. Roddick and K. Hornsby (Eds.), Proceedings of the International Workshop on Temporal, Spatial and Spatio-Temporal Data Mining-TSDM2000, in conjunction with the 4th European Conference on Principles and Practices of Knowledge Discovery and Databases, Lyon, France, 2000, Springer-Verlag Lecture Notes in Artificial Intelligence, pp. 31-42.
    • (2000) Proceedings of the International Workshop on Temporal, Spatial and Spatio-temporal Data Mining-TSDM2000 , pp. 31-42
    • Zhang, B.1    Hsu, M.2    Dayal, U.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.