메뉴 건너뛰기




Volumn 75, Issue 1, 2007, Pages 25-43

On the construction of imputation classes in surveys

Author keywords

Classification algorithm; Cross classification method; Imputation model; Non response and imputation variance; Non response bias; Non response model; Score method

Indexed keywords


EID: 34247248355     PISSN: 03067734     EISSN: None     Source Type: Journal    
DOI: 10.1111/j.1751-5823.2006.00002.x     Document Type: Article
Times cited : (36)

References (19)
  • 1
    • 84950458770 scopus 로고
    • Calibration estimators in survey sampling
    • Deville, J.-C. & Särndal, C.E. (1992). Calibration estimators in survey sampling. J. Am, Stat. Assoc., 87, 376-382.
    • (1992) J. Am, Stat. Assoc , vol.87 , pp. 376-382
    • Deville, J.-C.1    Särndal, C.E.2
  • 2
    • 1542744318 scopus 로고    scopus 로고
    • Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey
    • Eltinge, J.L. & Yansaneh, I.S. (1997). Diagnostics for formation of nonresponse adjustment cells, with an application to income nonresponse in the U.S. consumer expenditure survey. Survey Methodol, 23, 33-40.
    • (1997) Survey Methodol , vol.23 , pp. 33-40
    • Eltinge, J.L.1    Yansaneh, I.S.2
  • 3
    • 0000661829 scopus 로고
    • An exploratory technique for investigating large quantities of categorical data
    • Kass, G.V. (1980). An exploratory technique for investigating large quantities of categorical data. Appl. Statist., 29, 119-127.
    • (1980) Appl. Statist , vol.29 , pp. 119-127
    • Kass, G.V.1
  • 4
    • 0000497256 scopus 로고
    • Survey nonresponse adjustments for estimates of means
    • Little, R.J.A. (1986). Survey nonresponse adjustments for estimates of means. Intl. Stat. Rev., 54, 139-157.
    • (1986) Intl. Stat. Rev , vol.54 , pp. 139-157
    • Little, R.J.A.1
  • 5
    • 84952497143 scopus 로고
    • Missing-data adjustments in large surveys
    • Little, R.J.A. (1988). Missing-data adjustments in large surveys. J. Business Econ. Stat., 6, 287-296.
    • (1988) J. Business Econ. Stat , vol.6 , pp. 287-296
    • Little, R.J.A.1
  • 6
    • 8644254410 scopus 로고    scopus 로고
    • Robust likelihood-based analysis of multivariate data with missing values
    • Little, R.J.A. & An, H. (2004). Robust likelihood-based analysis of multivariate data with missing values. Stat. Sinica, 14, 949-968.
    • (2004) Stat. Sinica , vol.14 , pp. 949-968
    • Little, R.J.A.1    An, H.2
  • 7
    • 27744441565 scopus 로고    scopus 로고
    • Does weighting for nonresponse increase the variance of survey means?
    • Little, R.J.A. & Vartivarian, S. (2005). Does weighting for nonresponse increase the variance of survey means? Survey Methodol., 31, 161-168.
    • (2005) Survey Methodol , vol.31 , pp. 161-168
    • Little, R.J.A.1    Vartivarian, S.2
  • 9
    • 0000068035 scopus 로고
    • Variance estimation under two-phase sampling with application to imputation for missing data
    • Rao, J.N.K. & Sitter, R.R. (1995). Variance estimation under two-phase sampling with application to imputation for missing data. Biometrika, 82, 453-460.
    • (1995) Biometrika , vol.82 , pp. 453-460
    • Rao, J.N.K.1    Sitter, R.R.2
  • 10
    • 77951622706 scopus 로고
    • The central role of the propensity score in observational studies for causal effects
    • Rosenbaum, P.R. & Rubin, D.B. (1983). The central role of the propensity score in observational studies for causal effects. Biometrika, 70, 41-55.
    • (1983) Biometrika , vol.70 , pp. 41-55
    • Rosenbaum, P.R.1    Rubin, D.B.2
  • 11
    • 0017133178 scopus 로고
    • Inference and missing data
    • Rubin, D.B. (1976). Inference and missing data. Biometrika, 63, 581-592.
    • (1976) Biometrika , vol.63 , pp. 581-592
    • Rubin, D.B.1
  • 12
    • 0012424407 scopus 로고
    • Method for estimating the precision of survey estimates when imputation has been used
    • Särndal, C.E. (1992). Method for estimating the precision of survey estimates when imputation has been used. Survey Methodol., 18, 241-252.
    • (1992) Survey Methodol , vol.18 , pp. 241-252
    • Särndal, C.E.1
  • 13
    • 0041333009 scopus 로고    scopus 로고
    • Generalized additive selection models for the analysis of studies with potentially nonignorable missing outcome data
    • Scharfstein, D.O. & Irizarry, R.A. (2003). Generalized additive selection models for the analysis of studies with potentially nonignorable missing outcome data. Biometrics, 59, 601-613.
    • (2003) Biometrics , vol.59 , pp. 601-613
    • Scharfstein, D.O.1    Irizarry, R.A.2
  • 15
    • 0442277963 scopus 로고    scopus 로고
    • Variance estimation for survey data with composite imputation and nonnegligible sampling fractions
    • Shao, J. & Steel, P. (1999). Variance estimation for survey data with composite imputation and nonnegligible sampling fractions. J. Am. Stat. Assoc., 94, 254-265.
    • (1999) J. Am. Stat. Assoc , vol.94 , pp. 254-265
    • Shao, J.1    Steel, P.2
  • 16
    • 1542403913 scopus 로고    scopus 로고
    • Evaluation of adjustment for partial nonresponse bias in the National Immunization Survey
    • Smith, P.J., Hoaglin, D.C. Battaglia, M.P., Rao, J.N.K & Daniels, D. (2001). Evaluation of adjustment for partial nonresponse bias in the National Immunization Survey. J. R. Stat. Soc. A, 167, 141-156.
    • (2001) J. R. Stat. Soc. A , vol.167 , pp. 141-156
    • Smith, P.J.1    Hoaglin, D.C.2    Battaglia, M.P.3    Rao, J.N.K.4    Daniels, D.5
  • 18
    • 1542534218 scopus 로고
    • A note on the efficiency of weighting subclass means to reduce the effects of nonresponse when analyzing survey data
    • Thomsen, I. (1973). A note on the efficiency of weighting subclass means to reduce the effects of nonresponse when analyzing survey data. Statistik Tidskrift, 16, 191-196.
    • (1973) Statistik Tidskrift , vol.16 , pp. 191-196
    • Thomsen, I.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.