메뉴 건너뛰기




Volumn 19, Issue 9, 2010, Pages 2265-2277

Joint NDT image restoration and segmentation using Gauss-Markov-Potts prior models and variational Bayesian computation

Author keywords

Bayesian estimation; image restoration; segmentation; variational Bayes approximation

Indexed keywords

BAYESIAN ESTIMATION FRAMEWORK; BAYESIAN ESTIMATIONS; FINITE SET; GAUSS-MARKOV; GIBBS SAMPLING; HIDDEN VARIABLE; HOMOGENEOUS MATERIALS; HYPER-PARAMETERS; IMAGE RESTORATION; NON DESTRUCTIVE TESTING; NON-HOMOGENEOUS; PIECE-WISE; POINT-SPREAD FUNCTIONS; PROBABILITY LAW; SEGMENTATION; SEGMENTATION ALGORITHMS; VARIATIONAL BAYES; VARIATIONAL BAYES APPROXIMATIONS; VARIATIONAL BAYESIAN;

EID: 77955781188     PISSN: 10577149     EISSN: None     Source Type: Journal    
DOI: 10.1109/TIP.2010.2047902     Document Type: Article
Times cited : (64)

References (45)
  • 1
    • 0001300994 scopus 로고
    • Solution of incorrectly formulated problems and the regularization method
    • A. N. Tikhonov, "Solution of incorrectly formulated problems and the regularization method," Sov. Math., pp. 1035-1038, 1963.
    • (1963) Sov. Math. , pp. 1035-1038
    • Tikhonov, A.N.1
  • 2
    • 0027624429 scopus 로고
    • A generalized Gaussian image model for edge-preserving MAP estimation
    • Jul.
    • C. Bouman and K. Sauer, "A generalized Gaussian image model for edge-preserving MAP estimation," IEEE Trans. Image Process., vol.2, no.3, pp. 296-310, Jul. 1993.
    • (1993) IEEE Trans. Image Process. , vol.2 , Issue.3 , pp. 296-310
    • Bouman, C.1    Sauer, K.2
  • 3
    • 0025404969 scopus 로고
    • Bayesian reconstructions from emission tomography data using a modified em algorithm
    • Mar.
    • P. J. Green, "Bayesian reconstructions from emission tomography data using a modified EM algorithm," IEEE Trans. Med. Imag., vol.9, no.1, pp. 84-93, Mar. 1990.
    • (1990) IEEE Trans. Med. Imag. , vol.9 , Issue.1 , pp. 84-93
    • Green, P.J.1
  • 4
    • 0002030206 scopus 로고
    • Bayesian image analysis: Application to single photon emission computed tomography
    • S. Geman and D. E. McClure, "Bayesian image analysis: Application to single photon emission computed tomography," Amer. Statist. Assoc., pp. 12-18, 1985.
    • (1985) Amer. Statist. Assoc. , pp. 12-18
    • Geman, S.1    McClure, D.E.2
  • 5
    • 0024928175 scopus 로고
    • Image reconstruction and restoration: Overview of common estimation structures and problems
    • Dec.
    • G. Demoment, "Image reconstruction and restoration: Overview of common estimation structures and problems," IEEE Trans. Acoust., Speech, Signal Process., vol.37, no.12, pp. 2024-2036, Dec. 1989.
    • (1989) IEEE Trans. Acoust., Speech, Signal Process. , vol.37 , Issue.12 , pp. 2024-2036
    • Demoment, G.1
  • 6
    • 77955781443 scopus 로고
    • Digital image restoration
    • Berlin, Germany, Lecture Notes in Mathematics 1832
    • A. K. Katsaggelos, "Digital image restoration," in Proc. Statist. Comput. Sect., Berlin, Germany, 1991, vol.6, Lecture Notes in Mathematics 1832, pp. 12-18.
    • (1991) Proc. Statist. Comput. Sect. , vol.6 , pp. 12-18
    • Katsaggelos, A.K.1
  • 9
    • 0026124056 scopus 로고
    • Compound Gauss-Markov random fields for image estimation
    • Mar.
    • F. C. Jeng, J. W. Woods, and B. Morristown, "Compound Gauss-Markov random fields for image estimation," IEEE Trans. Signal Process., vol.39, no.3, pp. 683-697, Mar. 1991.
    • (1991) IEEE Trans. Signal Process. , vol.39 , Issue.3 , pp. 683-697
    • Jeng, F.C.1    Woods, J.W.2    Morristown, B.3
  • 10
    • 0001236757 scopus 로고    scopus 로고
    • Inversion of largesupport illposed linear operators using a piecewise
    • Apr.
    • M. Nikolova, J. Idier, and A. Mohammad-Djafari, "Inversion of largesupport illposed linear operators using a piecewise," IEEE Trans. Image Process., vol.7, no.4, pp. 571-585, Apr. 1998.
    • (1998) IEEE Trans. Image Process. , vol.7 , Issue.4 , pp. 571-585
    • Nikolova, M.1    Idier, J.2    Mohammad-Djafari, A.3
  • 11
    • 0142176890 scopus 로고    scopus 로고
    • Local strong homogeneity of a regularized estimator
    • M. Nikolova, "Local strong homogeneity of a regularized estimator," SIAM J. Appl. Math., vol.61, no.2, pp. 633-658, 2000.
    • (2000) SIAM J. Appl. Math. , vol.61 , Issue.2 , pp. 633-658
    • Nikolova, M.1
  • 12
    • 0034506573 scopus 로고    scopus 로고
    • Thresholding implied by truncated quadratic regularization
    • Dec.
    • M. Nikolova, "Thresholding implied by truncated quadratic regularization," IEEE Trans. Signal Process., vol.48, no.12, pp. 3437-3450, Dec. 2000.
    • (2000) IEEE Trans. Signal Process. , vol.48 , Issue.12 , pp. 3437-3450
    • Nikolova, M.1
  • 13
    • 0029306397 scopus 로고
    • Solution of inverse problems in image processing by wavelet expansion
    • May
    • G. Wang, J. Zhang, and G. W. Pan, "Solution of inverse problems in image processing by wavelet expansion," IEEE Trans. Image Process., vol.4, no.5, pp. 579-593, May 1995.
    • (1995) IEEE Trans. Image Process. , vol.4 , Issue.5 , pp. 579-593
    • Wang, G.1    Zhang, J.2    Pan, G.W.3
  • 14
    • 33645136947 scopus 로고    scopus 로고
    • Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors
    • Apr.
    • J. M. Bioucas-Dias, "Bayesian wavelet-based image deconvolution: A GEM algorithm exploiting a class of heavy-tailed priors," IEEE Trans. Image Process., vol.15, no.4, pp. 937-951, Apr. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.4 , pp. 937-951
    • Bioucas-Dias, J.M.1
  • 15
    • 0027803368 scopus 로고
    • Keeping the neural networks simple by minimizing the description length of the weights
    • New York, ACM
    • G. E. Hinton and D. van Camp, "Keeping the neural networks simple by minimizing the description length of the weights," in Proc. 6th Annu. Conf. Computational Learning Theory, New York, 1993, pp. 5-13, ACM.
    • (1993) Proc. 6th Annu. Conf. Computational Learning Theory , pp. 5-13
    • Hinton, G.E.1    Van Camp, D.2
  • 16
    • 0003425255 scopus 로고
    • Ensemble learning and evidence maximization
    • D. J. C. MacKay, "Ensemble learning and evidence maximization," in Proc. NIPS, 1995.
    • (1995) Proc. NIPS
    • MacKay, D.J.C.1
  • 17
    • 0033225865 scopus 로고    scopus 로고
    • An introduction to variational methods for graphical models
    • M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul, "An introduction to variational methods for graphical models," Mach. Learn., vol.37, no.2, pp. 183-233, 1999.
    • (1999) Mach. Learn. , vol.37 , Issue.2 , pp. 183-233
    • Jordan, M.I.1    Ghahramani, Z.2    Jaakkola, T.S.3    Saul, L.K.4
  • 18
    • 0042685161 scopus 로고    scopus 로고
    • Bayesian parameter estimation via variational methods
    • T. S. Jaakkola and M. I. Jordan, "Bayesian parameter estimation via variational methods," Statist. Comput., vol.10, no.1, pp. 25-37, 2000.
    • (2000) Statist. Comput. , vol.10 , Issue.1 , pp. 25-37
    • Jaakkola, T.S.1    Jordan, M.I.2
  • 20
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • H. Attias, "Independent factor analysis," Neural Computat., vol.11, no.4, pp. 803-851, 1999.
    • (1999) Neural Computat. , vol.11 , Issue.4 , pp. 803-851
    • Attias, H.1
  • 21
    • 3543127719 scopus 로고    scopus 로고
    • A variational approach for bayesian blind image deconvolution
    • Aug.
    • A. C. Likas and N. P. Galatsanos, "A variational approach for bayesian blind image deconvolution," IEEE Trans. Signal Process., vol.52, no.8, pp. 2222-2233, Aug. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.8 , pp. 2222-2233
    • Likas, A.C.1    Galatsanos, N.P.2
  • 22
    • 33751368657 scopus 로고    scopus 로고
    • Blind deconvolution using a variational approach to parameter, image, and blur estimation
    • Dec.
    • R. Molina, J. Mateos, and A. K. Katsaggelos, "Blind deconvolution using a variational approach to parameter, image, and blur estimation," IEEE Trans. Image Process., vol.15, no.12, pp. 3715-3727, Dec. 2006.
    • (2006) IEEE Trans. Image Process. , vol.15 , Issue.12 , pp. 3715-3727
    • Molina, R.1    Mateos, J.2    Katsaggelos, A.K.3
  • 23
    • 40849120186 scopus 로고    scopus 로고
    • Parameter estimation in TV image restoration using variational distribution approximation
    • Mar.
    • S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Parameter estimation in TV image restoration using variational distribution approximation," IEEE Trans. Image Process., vol.17, no.3, p. 326, Mar. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.3 , pp. 326
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 24
    • 52649142740 scopus 로고    scopus 로고
    • Variational bayesian image restoration based on a product of t-distributions image prior
    • Oct.
    • G. Chantas, N. Galatsanos, A. Likas, and M. Saunders, "Variational bayesian image restoration based on a product of t-distributions image prior," IEEE Trans. Image Process., vol.17, no.10, pp. 1795-1805, Oct. 2008.
    • (2008) IEEE Trans. Image Process. , vol.17 , Issue.10 , pp. 1795-1805
    • Chantas, G.1    Galatsanos, N.2    Likas, A.3    Saunders, M.4
  • 25
    • 58049218859 scopus 로고    scopus 로고
    • Variational bayesian blind deconvolution using a total variation prior
    • Jan.
    • S. D. Babacan, R. Molina, and A. K. Katsaggelos, "Variational bayesian blind deconvolution using a total variation prior," IEEE Trans. Image Process., vol.18, no.1, pp. 12-26, Jan. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.1 , pp. 12-26
    • Babacan, S.D.1    Molina, R.2    Katsaggelos, A.K.3
  • 26
    • 63449135803 scopus 로고    scopus 로고
    • Variational bayesian sparse Kernel-based blind image deconvolution with student's-t priors
    • Apr.
    • D. G. Tzikas, A. C. Likas, and N. P. Galatsanos, "Variational bayesian sparse Kernel-based blind image deconvolution with student's-t priors," IEEE Trans. Image Process., vol.18, no.4, pp. 753-764, Apr. 2009.
    • (2009) IEEE Trans. Image Process. , vol.18 , Issue.4 , pp. 753-764
    • Tzikas, D.G.1    Likas, A.C.2    Galatsanos, N.P.3
  • 27
    • 2342569641 scopus 로고    scopus 로고
    • Fast joint separation and segmentation of mixed images
    • H. Snoussi and A. Mohammad-Djafari, "Fast joint separation and segmentation of mixed images," J. Electron. Imag., vol.13, p. 349, 2004.
    • (2004) J. Electron. Imag. , vol.13 , pp. 349
    • Snoussi, H.1    Mohammad-Djafari, A.2
  • 28
    • 28544440194 scopus 로고    scopus 로고
    • Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data
    • O. Feron, B. Duchene, and A. Mohammad-Djafari, "Microwave imaging of inhomogeneous objects made of a finite number of dielectric and conductive materials from experimental data," Inv. Prob., vol.21, no.6, p. 95, 2005.
    • (2005) Inv. Prob. , vol.21 , Issue.6 , pp. 95
    • Feron, O.1    Duchene, B.2    Mohammad-Djafari, A.3
  • 30
    • 77955813047 scopus 로고    scopus 로고
    • 2D and 3D super-resolution: A Bayesian approach
    • A. Mohammad-Djafari, "2D and 3D super-resolution: A Bayesian approach," in Proc. AIP Conf., 2007, vol.949, p. 18.
    • (2007) Proc. AIP Conf. , vol.949 , pp. 18
    • Mohammad-Djafari, A.1
  • 32
    • 60649109668 scopus 로고    scopus 로고
    • Super-resolution: A short review, a new method based on hidden markov modeling of hr image and future challenges
    • 1093/comjnl/bxn005
    • A. Mohammad-Djafari, "Super-resolution: A short review, a new method based on hidden markov modeling of hr image and future challenges," Comput. J., 2008, 10,1093/comjnl/bxn005:126-141.
    • (2008) Comput. J. , vol.10 , pp. 126-141
    • Mohammad-Djafari, A.1
  • 33
    • 0031268341 scopus 로고    scopus 로고
    • Factorial hidden Markov models
    • Z. Ghahramani and M. Jordan, "Factorial hidden Markov models," Mach. Learn., no.29, pp. 245-273, 1997.
    • (1997) Mach. Learn. , Issue.29 , pp. 245-273
    • Ghahramani, Z.1    Jordan, M.2
  • 34
    • 0032803502 scopus 로고    scopus 로고
    • Bayesian neural networks for classification: How useful is the evidence framework?
    • W. Penny and S. Roberts, "Bayesian neural networks for classification: How useful is the evidence framework?," Neural Netw., vol.12, pp. 877-892, 1998.
    • (1998) Neural Netw. , vol.12 , pp. 877-892
    • Penny, W.1    Roberts, S.2
  • 36
    • 0033395078 scopus 로고    scopus 로고
    • Dynamic models for nonstationary signal segmentation
    • W. Penny and S. Roberts, "Dynamic models for nonstationary signal segmentation," Comput. Biomed. Res., vol.32, no.6, pp. 483-502, 1999.
    • (1999) Comput. Biomed. Res. , vol.32 , Issue.6 , pp. 483-502
    • Penny, W.1    Roberts, S.2
  • 37
    • 0036477205 scopus 로고    scopus 로고
    • Bayesian multivariate autoregresive models with structured priors
    • W. Penny and S. Roberts, "Bayesian multivariate autoregresive models with structured priors," Proc. IEE Vis., Image Signal Process., vol.149, no.1, pp. 33-41, 2002.
    • (2002) Proc. IEE Vis., Image Signal Process. , vol.149 , Issue.1 , pp. 33-41
    • Penny, W.1    Roberts, S.2
  • 38
    • 0036729732 scopus 로고    scopus 로고
    • Variational bayes for generalised autoregressive models
    • Sep.
    • S. Roberts and W. Penny, "Variational bayes for generalised autoregressive models," IEEE Trans. Signal Process., vol.50, no.9, pp. 2245-2257, Sep. 2002.
    • (2002) IEEE Trans. Signal Process. , vol.50 , Issue.9 , pp. 2245-2257
    • Roberts, S.1    Penny, W.2
  • 39
    • 0037603646 scopus 로고    scopus 로고
    • Mixtures of general linear models for functional neuroimaging
    • Apr.
    • W. Penny and K. Friston, "Mixtures of general linear models for functional neuroimaging," IEEE Trans. Med. Imag., vol.22, no.4, pp. 504-514, Apr. 2003.
    • (2003) IEEE Trans. Med. Imag. , vol.22 , Issue.4 , pp. 504-514
    • Penny, W.1    Friston, K.2
  • 40
    • 0037270849 scopus 로고    scopus 로고
    • Variational mixture of bayesian independent component analysers
    • R. A. Choudrey and S. J. Roberts, "Variational mixture of bayesian independent component analysers," Neural Computat., vol.15, no.1, 2003.
    • (2003) Neural Computat. , vol.15 , Issue.1
    • Choudrey, R.A.1    Roberts, S.J.2
  • 41
    • 0042671302 scopus 로고    scopus 로고
    • Variational Bayesian inference for fMRI time series
    • DOI 10.1016/S1053-8119(03)00071-5
    • W. Penny, S. Kiebel, and K. Friston, "Variational bayesian inference for fmri time series," NeuroImage, vol.19, no.3, pp. 727-741, 2003. (Pubitemid 36918216)
    • (2003) NeuroImage , vol.19 , Issue.3 , pp. 727-741
    • Penny, W.1    Kiebel, S.2    Friston, K.3
  • 42
    • 3543127719 scopus 로고    scopus 로고
    • A variational approach for bayesian blind image deconvolution
    • Aug.
    • N. Nasios and A. Bors, "A variational approach for bayesian blind image deconvolution," IEEE Trans. Signal Process., vol.52, no.8, pp. 2222-2233, Aug. 2004.
    • (2004) IEEE Trans. Signal Process. , vol.52 , Issue.8 , pp. 2222-2233
    • Nasios, N.1    Bors, A.2
  • 43
    • 33746813525 scopus 로고    scopus 로고
    • Variational learning for gaussian mixture models
    • Aug.
    • N. Nasios and A. Bors, "Variational learning for gaussian mixture models," IEEE Trans. Syst., Man Cybern. B, Cybern., vol.36, no.4, pp. 849-862, Aug. 2006.
    • (2006) IEEE Trans. Syst., Man Cybern. B, Cybern. , vol.36 , Issue.4 , pp. 849-862
    • Nasios, N.1    Bors, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.