-
2
-
-
51249186590
-
On the number of subgraphs of prescribed type of graphs with a given number of edges
-
N. Alon, On the number of subgraphs of prescribed type of graphs with a given number of edges, Israel J. Math., 38 (1981), pp. 116-130.
-
(1981)
Israel J. Math.
, vol.38
, pp. 116-130
-
-
Alon, N.1
-
3
-
-
26044453102
-
How many Latin squares are there?
-
R. Alter, How many Latin squares are there?, Amer. Math. Monthly, 82 (1975), pp. 632-634.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 632-634
-
-
Alter, R.1
-
4
-
-
84885732615
-
Construction with the aid of a computer of all Latin squares of order 8
-
In Russian
-
V. L. Arlazarov, A. M. Baraev, J. U. Gol'Fand and I. A. Faradzev, Construction with the aid of a computer of all Latin squares of order 8, Algorithmic Investigations in Combinatorics, (1978), pp. 129-141. In Russian.
-
(1978)
Algorithmic Investigations in Combinatorics
, pp. 129-141
-
-
Arlazarov, V.L.1
Baraev, A.M.2
Gol'Fand, J.U.3
Faradzev, I.A.4
-
5
-
-
30244515589
-
r,s)
-
r,s), European J. Combin., 1 (1980), pp. 9-17.
-
(1980)
European J. Combin.
, vol.1
, pp. 9-17
-
-
Athreya, K.B.1
Pranesachar, C.R.2
Singhi, N.M.3
-
7
-
-
5844329530
-
The number of 9 × 9 Latin squares
-
S. E. Bammel and J. Rothstein, The number of 9 × 9 Latin squares, Discrete Math., 11 (1975), pp. 93-95.
-
(1975)
Discrete Math.
, vol.11
, pp. 93-95
-
-
Bammel, S.E.1
Rothstein, J.2
-
9
-
-
77955697551
-
A note on isomorphism classes of reduced Latin squares of order 7
-
L. J. Brant and G. L. Mullen, A note on isomorphism classes of reduced Latin squares of order 7, Util. Math., 27 (1985), pp. 261-263.
-
(1985)
Util. Math.
, vol.27
, pp. 261-263
-
-
Brant, L.J.1
Mullen, G.L.2
-
10
-
-
0000906859
-
Certain properties of nonnegative matrices and their permanents
-
L. M. Brègman, Certain properties of nonnegative matrices and their permanents, Soviet Math. Dokl., 14 (1973), pp. 945-949.
-
(1973)
Soviet Math. Dokl.
, vol.14
, pp. 945-949
-
-
Brègman, L.M.1
-
12
-
-
5244383602
-
Enumeration of Latin squares with application to order 8
-
Theory
-
J. W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory, 5 (1968), pp. 177-184.
-
(1968)
J. Combin.
, vol.5
, pp. 177-184
-
-
Brown, J.W.1
-
13
-
-
33846145919
-
Simple quasigroups
-
R. H. Bruck, Simple quasigroups, Bull. Amer. Math. Soc., 50 (1944), pp. 769-781.
-
(1944)
Bull. Amer. Math. Soc.
, vol.50
, pp. 769-781
-
-
Bruck, R.H.1
-
14
-
-
0001371607
-
Some results in the theory of quasigroups
-
R. H. Bruck Some results in the theory of quasigroups, Trans. Amer. Math. Soc., 55 (1944), pp. 19-52.
-
(1944)
Trans. Amer. Math. Soc.
, vol.55
, pp. 19-52
-
-
Bruck, R.H.1
-
15
-
-
0039990367
-
Finite nets. I. Numerical invariants
-
R. H. Bruck, Finite nets. I. Numerical invariants, Canadian J. Math., 3 (1951), pp. 94-107.
-
(1951)
Canadian J. Math.
, vol.3
, pp. 94-107
-
-
Bruck, R.H.1
-
16
-
-
84972569045
-
Finite nets. II. Uniqueness and imbedding
-
R. H. Bruck, Finite nets. II. Uniqueness and imbedding, Pacific J. Math., 13 (1963), pp. 421-457.
-
(1963)
Pacific J. Math.
, vol.13
, pp. 421-457
-
-
Bruck, R.H.1
-
17
-
-
0008984110
-
Principal loop-isotopes of quasigroups
-
B. F. Bryant and H. Schneider, Principal loop-isotopes of quasigroups, Canad. J. Math., 18 (1966), pp. 120-125.
-
(1966)
Canad. J. Math.
, vol.18
, pp. 120-125
-
-
Bryant, B.F.1
Schneider, H.2
-
18
-
-
0036264510
-
A family of perfect factorizations of complete bipartite graphs
-
D. Bryant, B. M. Maenhaut, and I. M. Wanless, A family of perfect factorizations of complete bipartite graphs, J. Combin. Theory Ser. A, 98 (2002), pp. 328-342.
-
(2002)
J. Combin. Theory Ser. A
, vol.98
, pp. 328-342
-
-
Bryant, D.1
Maenhaut, B.M.2
Wanless, I.M.3
-
19
-
-
33645542951
-
New families of atomic Latin squares and perfect 1-factorisations
-
D. Bryant, B. M. Maenhaut, and I. M. Wanless, New families of atomic Latin squares and perfect 1-factorisations, J. Combin. Theory Ser. A, 113 (2004), pp. 608-624.
-
(2004)
J. Combin Theory Ser. A
, vol.113
, pp. 608-624
-
-
Bryant, D.1
Maenhaut, B.M.2
Wanless, I.M.3
-
20
-
-
76449105339
-
Congruences connected with three-line Latin rectangles
-
L. Carlitz, Congruences connected with three-line Latin rectangles, Proc. Amer. Math. Soc., 4 (1953), pp. 9-11.
-
(1953)
Proc. Amer. Math. Soc.
, vol.4
, pp. 9-11
-
-
Carlitz, L.1
-
21
-
-
17444395938
-
On Latin squares
-
See [22], vol. 13, no. 903, pp. 55-57
-
A. Cayley, On Latin squares, Messenger of Math., 19 (1890), pp. 135-137. See [22], vol. 13, no. 903, pp. 55-57.
-
(1890)
Messenger of Math.19
, vol.19
, pp. 135-137
-
-
Cayley, A.1
-
23
-
-
18844367229
-
An update on Minc's survey of open problems involving permanents
-
G.-S. Cheon and I. M. Wanless, An update on Minc's survey of open problems involving permanents, Linear Algebra Appl., 403 (2005), pp. 314-342.
-
(2005)
Linear Algebra Appl.
, vol.403
, pp. 314-342
-
-
Cheon, G.-S.1
Wanless, I.M.2
-
24
-
-
0037760934
-
The complexity of completing partial Latin squares
-
C. J. Colbourn, The complexity of completing partial Latin squares, Discrete Appl. Math., 8 (1984), pp. 25-30.
-
(1984)
Discrete Appl. Math.
, vol.8
, pp. 25-30
-
-
Colbourn, C.J.1
-
28
-
-
77955698617
-
How Many Latin Rectangles Are There?
-
arXiv:0711.0527v1 [math.CO]
-
A. de Gennaro, How many Latin rectangles are there?, (2007). arXiv:0711.0527v1 [math.CO].
-
(2007)
-
-
de Gennaro, A.1
-
30
-
-
77955693298
-
Latin squares and 1-factorizations of complete graphs. I. Connections between the enumeration of Latin squares and rectangles and r-factorizations of labeled graphs
-
J. Dénes and A. D. Keedwell,Latin squares and 1-factorizations of complete graphs. I. Connections between the enumeration of Latin squares and rectangles and r-factorizations of labeled graphs, Ars Combin., 25 (1988), pp. 109-126.
-
(1988)
Ars Combin.
, vol.25
, pp. 109-126
-
-
Dénes, J.1
Keedwell, A.D.2
-
31
-
-
0002334226
-
n using MacMahon's double partition idea
-
n using MacMahon's double partition idea, Util. Math., 34 (1988), pp. 73-83.
-
(1988)
Util. Math.
, vol.34
, pp. 73-83
-
-
Dénes, J.1
Keedwell, A.D.2
-
33
-
-
0041017002
-
Enumeration formulas for Latin and frequency squares
-
J. Dénes and G. L. Mullen Enumeration formulas for Latin and frequency squares, Discrete Math., 111 (1993), pp. 157-163.
-
(1993)
Discrete Math.
, vol.111
, pp. 157-163
-
-
Dénes, J.1
Mullen, G.L.2
-
36
-
-
0031161798
-
On the number of even and odd Latin squares of order p + 1
-
A. A. Drisko, On the number of even and odd Latin squares of order p + 1, Adv. Math., 128 (1997), pp. 20-35.
-
(1997)
Adv. Math.
, vol.128
, pp. 20-35
-
-
Drisko, A.A.1
-
38
-
-
77955699745
-
An upper bound for the number of normalized Latin square
-
L. Duan, An upper bound for the number of normalized Latin square, Chinese Quart. J. Math., 21 (2006), pp. 585-589.
-
(2006)
Chinese Quart J. Math.
, vol.21
, pp. 585-589
-
-
Duan, L.1
-
39
-
-
0001444508
-
The solution of the van der Waerden problem for permanents
-
G. P. Egorichev, The solution of the van der Waerden problem for permanents, Adv. Math., 42 (1981), pp. 299-305.
-
(1981)
Adv. Math.
, vol.42
, pp. 299-305
-
-
Egorichev, G.P.1
-
40
-
-
0039738285
-
The asymptotic number of Latin rectangles
-
P. Erdos and I. Kaplansky The asymptotic number of Latin rectangles, Amer. J. Math., 68 (1946), pp. 230-236.
-
(1946)
Amer. J. Math.
, vol.68
, pp. 230-236
-
-
Erdos, P.1
Kaplansky, I.2
-
43
-
-
0043072005
-
Recherches sur une nouvelle espéce de quarrés magiques
-
Eneström E530, Opera Omnia OI7
-
L. Euler, Recherches sur une nouvelle espéce de quarrés magiques, Verh. Zeeuwsch. Gennot. Weten. Vliss., 9 (1782), pp. 85-239. Enestr̈om E530, Opera Omnia OI7, pp. 291-392.
-
(1782)
Verh. Zeeuwsch. Gennot. Weten. Vliss.
, vol.9
, pp. 85-239
-
-
Euler, L.1
-
44
-
-
84887093111
-
Cycle structures of autotopisms of the Latin squares of order up to 11
-
To appear
-
R. M. Falcón Cycle structures of autotopisms of the Latin squares of order up to 11, Ars Combin., (2009). To appear.
-
(2009)
Ars Combin.
-
-
Falcón, R.M.1
-
45
-
-
35848930389
-
Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7
-
R. M. Falcón J. Martín-Morales Gröbner bases and the number of Latin squares related to autotopisms of order ≤ 7, J. Symbolic Comput., 42 (2007), pp. 1142-1154.
-
(2007)
J. Symbolic Comput.
, vol.42
, pp. 1142-1154
-
-
Falcón, R.M.1
Martín-Morales, J.2
-
46
-
-
0039738284
-
A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix
-
D. I. Falikman, A proof of van der Waerden's conjecture on the permanent of a doubly stochastic matrix, Math. Notes, 29 (1981), pp. 475-479.
-
(1981)
Math. Notes
, vol.29
, pp. 475-479
-
-
Falikman, D.I.1
-
48
-
-
0345905842
-
Sur les permutations carrés
-
M. Frolov, Sur les permutations carrés, J. de Math. spéc., 4 (1890), pp. 8-11 and 25-30.
-
(1890)
J. de Math. spéc.
, vol.4
, pp. 8-11
-
-
Frolov, M.1
-
49
-
-
76449090949
-
The number of Latin rectangles
-
In Chinese
-
Z.-L. Fu, The number of Latin rectangles, Math. Practice Theory, (1992), pp. 40-41. In Chinese.
-
(1992)
Math. Practice Theory
, pp. 0-41
-
-
Fu, Z.-L.1
-
50
-
-
84855703104
-
Latin squares associated to principal autotopisms of long cycles. Application in cryptography
-
R. M. F. Ganfornina, Latin squares associated to principal autotopisms of long cycles. Application in cryptography, in Proceedings of Transgressive Computing, 2006, pp. 213-230.
-
(2006)
Proceedings of Transgressive Computing
, pp. 213-230
-
-
Ganfornina, R.M.F.1
-
54
-
-
84968476158
-
Counting Latin rectangles
-
I. M. Gessel, Counting Latin rectangles, Bull. Amer. Math. Soc., 16 (1987), pp. 79-83.
-
(1987)
Bull. Amer. Math. Soc.
, vol.16
, pp. 79-83
-
-
Gessel, I.M.1
-
55
-
-
77955674123
-
A characteristic of species of 7 × 7 Latin squares
-
S. G. Ghurye, A characteristic of species of 7 × 7 Latin squares, Ann. Eugenics, 14 (1948), p. 133.
-
(1948)
Ann. Eugenics
, vol.14
, pp. 133
-
-
Ghurye, S.G.1
-
56
-
-
77954493592
-
The conjectures of Alon-Tarsi and Rota in dimension prime minus one
-
D. G. Glynn, The conjectures of Alon-Tarsi and Rota in dimension prime minus one, SIAM J. Discrete Math., 24 (2010), pp. 394-399.
-
(2010)
SIAM J. Discrete Math.
, vol.24
, pp. 394-399
-
-
Glynn, D.G.1
-
58
-
-
38249020159
-
Asymptotic enumeration of Latin rectangles
-
C. D. Godsil and B. D. McKay, Asymptotic enumeration of Latin rectangles, J. Combin. Theory Ser. B, 48 (1990), pp. 19-44.
-
(1990)
J. Combin. Theory Ser. B
, vol.48
, pp. 19-44
-
-
Godsil, C.D.1
McKay, B.D.2
-
60
-
-
77955675794
-
-
GMP - GNU multiple precision arithmetic library
-
T. Granlund et al., GMP - GNU multiple precision arithmetic library. http://gmplib.org/
-
-
-
Granlund, T.1
-
62
-
-
38249022537
-
Asymptotic enumeration of generalized Latin rectangles
-
T. A. Green, Asymptotic enumeration of generalized Latin rectangles, J. Combin. Theory Ser. A, 51 (1989), pp. 149-160.
-
(1989)
J. Combin. Theory Ser. A
, vol.51
, pp. 149-160
-
-
Green, T.A.1
-
63
-
-
85045818030
-
Erratum: "Asymptotic enumeration of generalized Latin rectangles"
-
T. A. Green Erratum: "Asymptotic enumeration of generalized Latin rectangles", J. Combin. Theory Ser. A, 52 (1989), p. 322.
-
(1989)
J. Combin. Theory Ser. A
, vol.52
, pp. 322
-
-
Green, T.A.1
-
64
-
-
77955696903
-
The difference in even and odd Latin rectangles for small cases
-
L. Habsieger and J. C. M. Janssen, The difference in even and odd Latin rectangles for small cases, Ann. Sci. Math. Québec, 19 (1995), pp. 69-77.
-
(1995)
Ann. Sci. Math. Québec
, vol.19
, pp. 69-77
-
-
Habsieger, L.1
Janssen, J.C.M.2
-
65
-
-
0007455672
-
Distinct representatives of subsets
-
M. Hall, Jr., Distinct representatives of subsets, Bull. Amer. Math. Soc., 54 (1948), pp. 922-926.
-
(1948)
Bull. Amer. Math. Soc.
, vol.54
, pp. 922-926
-
-
Hall Jr., M.1
-
67
-
-
76449090948
-
How many i - j reduced Latin rectangles are there?
-
J. R. Hamilton and G. L. Mullen, How many i - j reduced Latin rectangles are there?, Amer. Math. Monthly, 87 (1980), pp. 392-394.
-
(1980)
Amer. Math. Monthly
, vol.87
, pp. 392-394
-
-
Hamilton, J.R.1
Mullen, G.L.2
-
68
-
-
34247149855
-
Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach
-
A. Heinze and M. Klin, Links between Latin squares, nets, graphs and groups: Work inspired by a paper of A. Barlotti and K. Strambach, Electron. Notes Discrete Math., 23 (2005), pp. 13-21.
-
(2005)
Electron. Notes Discrete Math.
, vol.23
, pp. 13-21
-
-
Heinze, A.1
Klin, M.2
-
70
-
-
76449111481
-
The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares
-
S. M. Jacob, The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares, Proc. London Math. Soc. (2), 31 (1930), pp. 329-354.
-
(1930)
Proc. London Math. Soc.
, vol.31
, Issue.2
, pp. 329-354
-
-
Jacob, S.M.1
-
71
-
-
49549128831
-
The number of distinct Latin squares as a group-theoretical constant
-
A.-A. A. Jucys, The number of distinct Latin squares as a group-theoretical constant, J. Combin. Theory Ser. A, 20 (1976), pp. 265-272.
-
(1976)
J. Combin. Theory Ser. A
, vol.20
, pp. 265-272
-
-
Jucys, A.-A.A.1
-
72
-
-
0011609632
-
Latin squares, their geometries and their groups. A survey
-
D. Jungnickel, Latin squares, their geometries and their groups. A survey, IMA Vol. Math. Appl., 21 (1990), pp. 166-225.
-
(1990)
IMA Vol. Math. Appl.
, vol.21
, pp. 166-225
-
-
Jungnickel, D.1
-
73
-
-
0002798708
-
Matrix factorizations of determinants and permanents
-
W. B. Jurkat and H. J. Ryser, Matrix factorizations of determinants and permanents, J. Algebra, 3 (1966), pp. 1-27.
-
(1966)
J. Algebra
, vol.3
, pp. 1-27
-
-
Jurkat, W.B.1
Ryser, H.J.2
-
74
-
-
63149154837
-
Addendum to "The existence of Buchsteiner and conjugacy-closed quasigroups"
-
V. Kala and A. D. Keedwell, Addendum to "The existence of Buchsteiner and conjugacy-closed quasigroups", European J. Combin., 30 (2009), p. 1386.
-
(2009)
European J. Combin.
, vol.30
, pp. 1386
-
-
Kala, V.1
Keedwell, A.D.2
-
75
-
-
63149154837
-
The existence of Buchsteiner and conjugacy-closed quasigroups
-
A. D. Keedwell, The existence of Buchsteiner and conjugacy-closed quasigroups, European J. Combin., 30 (2009), pp. 1382-1385.
-
(2009)
European J. Combin.
, vol.30
, pp. 1382-1385
-
-
Keedwell, A.D.1
-
76
-
-
76449092115
-
The enumeration of the Latin rectangle of depth three by means of a difference equation
-
S. M. Kerawala, The enumeration of the Latin rectangle of depth three by means of a difference equation, Bull. Calcutta Math. Soc., 33 (1941), pp. 119-127.
-
(1941)
Bull. Calcutta Math. Soc.
, vol.33
, pp. 119-127
-
-
Kerawala, S.M.1
-
77
-
-
77955691096
-
Quasigroup automorphisms and symmetric group characters
-
B. Kerby and J. D. H. Smith, Quasigroup automorphisms and symmetric group characters, Comment. Math. Univ. Carol., 51 (2010), pp. 279-286.
-
(2010)
Comment. Math. Univ. Carol.
, vol.51
, pp. 279-286
-
-
Kerby, B.1
Smith, J.D.H.2
-
78
-
-
77955700838
-
Quasigroup automorphisms and the Norton-Stein complex
-
To appear
-
B. Kerby and J. D. H. Smith, Quasigroup automorphisms and the Norton-Stein complex, Proc. Amer. Math. Soc. To appear.
-
Proc. Amer. Math. Soc.
-
-
Kerby, B.1
Smith, J.D.H.2
-
79
-
-
22544435530
-
Diassociativity in conjugacy closed loops
-
M. K. Kinyon, K. Kunen and J. D. Phillips, Diassociativity in conjugacy closed loops, Comm. Algebra, 32 (2004), pp. 767-786.
-
(2004)
Comm. Algebra
, vol.32
, pp. 767-786
-
-
Kinyon, M.K.1
Kunen, K.2
Phillips, J.D.3
-
80
-
-
40849133509
-
Graeco-Latin squares and a mistaken conjecture of Euler
-
D. Klyve and L. Stemkoski, Graeco-Latin squares and a mistaken conjecture of Euler, Cambridge Mathematical Journal, 37 (2006), pp. 2-15.
-
(2006)
Cambridge Mathematical Journal
, vol.37
, pp. 2-15
-
-
Klyve, D.1
Stemkoski, L.2
-
81
-
-
0040444141
-
On the number of 8 × 8 Latin squares
-
G. Kolesova, C. W. H. Lam and L. Thiel, On the number of 8 × 8 Latin squares, J. Combin. Theory Ser. A, 54 (1990), pp. 143-148.
-
(1990)
J. Combin. Theory Ser. A
, vol.54
, pp. 143-148
-
-
Kolesova, G.1
Lam, C.W.H.2
Thiel, L.3
-
82
-
-
62249135166
-
Estimating the number of Latin rectangles by the fast simulation method
-
N. Y. Kuznetsov, Estimating the number of Latin rectangles by the fast simulation method, Cybernet. Systems Anal., 45 (2009), pp. 69-75.
-
(2009)
Cybernet. Systems Anal.
, vol.45
, pp. 69-75
-
-
Kuznetsov, N.Y.1
-
84
-
-
0242303526
-
An upper bound for the permanent of (0, 1)-matrices
-
H. Liang and F. Bai, An upper bound for the permanent of (0, 1)-matrices, Linear Algebra Appl., 377 (2004), pp. 291-295.
-
(2004)
Linear Algebra Appl.
, vol.377
, pp. 291-295
-
-
Liang, H.1
Bai, F.2
-
85
-
-
76449115907
-
A procedure for the enumeration of 4 × n Latin rectangles
-
F. W. Light, Jr., A procedure for the enumeration of 4 × n Latin rectangles, Fibonacci Quart., 11 (1973), pp. 241-246.
-
(1973)
Fibonacci Quart.
, vol.11
, pp. 241-246
-
-
Light Jr., F.W.1
-
86
-
-
76449095322
-
Enumeration of truncated Latin rectangles
-
F. W. Light, Jr, Enumeration of truncated Latin rectangles, Fibonacci Quart., 17 (1979), pp. 34-36.
-
(1979)
Fibonacci Quart.
, vol.17
, pp. 34-36
-
-
Light Jr., F.W.1
-
87
-
-
76449119888
-
A new method in combinatory analysis, with applications to Latin squares and associated questions
-
P. A. MacMahon, A new method in combinatory analysis, with applications to Latin squares and associated questions, Trans. Camb. Phil. Soc., 16 (1898), pp. 262-290.
-
(1898)
Trans. Camb. Phil. Soc.
, vol.16
, pp. 262-290
-
-
MacMahon, P.A.1
-
88
-
-
77955683329
-
Combinatorial analysis. the foundations of a new theory
-
P. A. MacMahon, Combinatorial analysis. the foundations of a new theory, Philos. Trans. Roy. Soc. London Ser. A, 194 (1900), pp. 361-386.
-
(1900)
Philos. Trans. Roy. Soc. London Ser. A
, vol.194
, pp. 361-386
-
-
MacMahon, P.A.1
-
91
-
-
0345742420
-
Atomic Latin squares of order eleven
-
B. M. Maenhaut and I. M. Wanless, Atomic Latin squares of order eleven, J. Combin. Des., 12 (2004), pp. 12-34.
-
(2004)
J. Combin. Des.
, vol.12
, pp. 12-34
-
-
Maenhaut, B.M.1
Wanless, I.M.2
-
92
-
-
77955707836
-
Henryk Minc - a biography
-
M. Marcus, Henryk Minc - a biography, Linear Multilinear Algebra, 51 (2003), pp. 1-10.
-
(2003)
Linear Multilinear Algebra
, vol.51
, pp. 1-10
-
-
Marcus, M.1
-
93
-
-
77955674550
-
-
nauty - Graph isomorphism
-
B. D. McKay, nauty - Graph isomorphism. http://cs.anu.edu.au/~bdm/nauty/
-
-
-
McKay, B.D.1
-
94
-
-
33847786535
-
Small Latin squares, quasigroups, and loops
-
B. D. McKay, A. Meynert and W. Myrvold, Small Latin squares, quasigroups, and loops, J. Combin. Des., 15 (2007), pp. 98-119.
-
(2007)
J. Combin. Des.
, vol.15
, pp. 98-119
-
-
McKay, B.D.1
Meynert, A.2
Myrvold, W.3
-
96
-
-
26044433646
-
On the number of Latin squares
-
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann. Comb., 9 (2005), pp. 335-344.
-
(2005)
Ann. Comb.
, vol.9
, pp. 335-344
-
-
McKay, B.D.1
Wanless, I.M.2
-
97
-
-
0011690522
-
Upper bounds for permanents of (0, 1)-matrices
-
H. Minc, Upper bounds for permanents of (0, 1)-matrices, Bull. Amer. Math. Soc., 69 (1963), pp. 789-791.
-
(1963)
Bull. Amer. Math. Soc.
, vol.69
, pp. 789-791
-
-
Minc, H.1
-
98
-
-
58149417113
-
An inequality for permanents of (0, 1)-matrices
-
H. Minc, An inequality for permanents of (0, 1)-matrices, J. Combinatorial Theory, 2 (1967), pp. 321-326.
-
(1967)
J. Combinatorial Theory
, vol.2
, pp. 321-326
-
-
Minc, H.1
-
99
-
-
84968466650
-
On lower bounds for permanents of (0, 1) matrices
-
H. Minc, On lower bounds for permanents of (0, 1) matrices, Proc. Amer. Math. Soc., 22 (1969), pp. 117-123.
-
(1969)
Proc. Amer. Math. Soc.
, vol.22
, pp. 117-123
-
-
Minc, H.1
-
100
-
-
0004193192
-
-
Addison-Wesley
-
H. Minc, Permanents, Addison-Wesley, 1978.
-
(1978)
Permanents
-
-
Minc, H.1
-
101
-
-
0000773629
-
Theory of permanents, 1978-1981
-
H. Minc, Theory of permanents, 1978-1981, Linear Multilinear Algebra, 12 (1982/83), pp. 227-263.
-
(1982)
Linear Multilinear Algebra
, vol.12
, pp. 227-263
-
-
Minc, H.1
-
102
-
-
84947882873
-
Theory of permanents, 1982-1985
-
H. Minc, Theory of permanents, 1982-1985, Linear Multilinear Algebra, 21 (1987), pp. 109-148.
-
(1987)
Linear Multilinear Algebra
, vol.21
, pp. 109-148
-
-
Minc, H.1
-
104
-
-
77950408619
-
The number of very reduced 4 × n Latin rectangles
-
W. O. J. Moser, The number of very reduced 4 × n Latin rectangles, Canad. J. Math., 19 (1967), pp. 1011-1017.
-
(1967)
Canad. J. Math.
, vol.19
, pp. 1011-1017
-
-
Moser, W.O.J.1
-
105
-
-
26044432077
-
How many i - j reduced Latin squares are there?
-
G. L. Mullen, How many i - j reduced Latin squares are there?, Amer. Math. Monthly, 82 (1978), pp. 751-752.
-
(1978)
Amer. Math. Monthly
, vol.82
, pp. 751-752
-
-
Mullen, G.L.1
-
107
-
-
77955683111
-
Some data concerning the number of Latin rectangles
-
G. L. Mullen and D. Purdy, Some data concerning the number of Latin rectangles, J. Combin. Math. Combin. Comput., 13 (1993), pp. 161-165.
-
(1993)
J. Combin. Math. Combin. Comput.
, vol.13
, pp. 161-165
-
-
Mullen, G.L.1
Purdy, D.2
-
108
-
-
77955684937
-
-
LOOPS - Computing with quasigroups and loops in GAP
-
G. P. Nagy and P. Vojtěchovský, LOOPS - Computing with quasigroups and loops in GAP. http://www.math.du.edu/loops/
-
-
-
Nagy, G.P.1
Vojtěchovský, P.2
-
111
-
-
34147180300
-
Asymptotic enumeration of generalized Latin rectangles
-
J. R. Nechvatal, Asymptotic enumeration of generalized Latin rectangles, Util. Math., 20 (1981), pp. 273-292.
-
(1981)
Util. Math.
, vol.20
, pp. 273-292
-
-
Nechvatal, J.R.1
-
112
-
-
84968491136
-
An integer associated with Latin squares
-
D. A. Norton and S. K. Stein, An integer associated with Latin squares, Proc. Amer. Math. Soc., 7 (1956), pp. 331-334.
-
(1956)
Proc. Amer. Math. Soc.
, vol.7
, pp. 331-334
-
-
Norton, D.A.1
Stein, S.K.2
-
114
-
-
0011271917
-
The 7 × 7 squares
-
H. W. Norton, The 7 × 7 squares, Ann. Eugenics, 2 (1939), pp. 269-307.
-
(1939)
Ann. Eugenics
, vol.2
, pp. 269-307
-
-
Norton, H.W.1
-
115
-
-
0001642125
-
Asymptotics and random matrices with row-sum and column-sum restrictions
-
P. E. O'Neil, Asymptotics and random matrices with row-sum and column-sum restrictions, Bull. Amer. Math. Soc., 75 (1969), pp. 1276-1282.
-
(1969)
Bull. Amer. Math. Soc.
, vol.75
, pp. 1276-1282
-
-
O'Neil, P.E.1
-
116
-
-
77955673653
-
Latin square graphs and their automorphism groups
-
K. T. Phelps, Latin square graphs and their automorphism groups, Ars Combin., 7 (1979), pp. 273-299.
-
(1979)
Ars Combin.
, vol.7
, pp. 273-299
-
-
Phelps, K.T.1
-
117
-
-
49149143666
-
Automorphism-free Latin square graphs
-
K. T. Phelps, Automorphism-free Latin square graphs, Discrete Math., 31 (1980), pp. 193-200.
-
(1980)
Discrete Math.
, vol.31
, pp. 193-200
-
-
Phelps, K.T.1
-
119
-
-
0001709054
-
Classifying Youden rectangles
-
D. A. Preece, Classifying Youden rectangles, J. Roy. Statist. Soc. Ser. B, 28 (1966), pp. 118-130.
-
(1966)
J. Roy. Statist. Soc. Ser. B
, vol.28
, pp. 118-130
-
-
Preece, D.A.1
-
120
-
-
0040924181
-
Three-line Latin rectangles
-
J. Riordan, Three-line Latin rectangles, Amer. Math. Monthly, 51 (1944), pp. 450-452.
-
(1944)
Amer. Math. Monthly
, vol.51
, pp. 450-452
-
-
Riordan, J.1
-
121
-
-
76449096180
-
A recurrence relation for three-line Latin rectangles
-
J. Riordan, A recurrence relation for three-line Latin rectangles, Amer. Math. Monthly, 59 (1952), pp. 159-162.
-
(1952)
Amer. Math. Monthly
, vol.59
, pp. 159-162
-
-
Riordan, J.1
-
122
-
-
77955704395
-
Book review: Percy Alexander MacMahon: Collected Papers, Volume I, Combinatorics
-
J. Riordan, Book review: Percy Alexander MacMahon: Collected Papers, Volume I, Combinatorics, Bull. Amer. Math. Soc. (N.S.), 2 (1980), pp. 239-241.
-
(1980)
Bull. Amer. Math. Soc. (N.S.)
, vol.2
, pp. 239-241
-
-
Riordan, J.1
-
126
-
-
33744777311
-
Omission dans les listes de Norton pour les carr ́es 7 × 7
-
A. A. Sade, Omission dans les listes de Norton pour les carr ́es 7 × 7, J. Reine Angew. Math., 189 (1951), pp. 190-191.
-
(1951)
J. Reine Angew. Math.
, vol.189
, pp. 190-191
-
-
Sade, A.A.1
-
127
-
-
0011319304
-
An omission in Norton's list of 7 × 7 squares
-
A. A. Sade, An omission in Norton's list of 7 × 7 squares, Ann. Math. Stat., 22 (1951), pp. 306-307.
-
(1951)
Ann. Math. Stat.
, vol.22
, pp. 306-307
-
-
Sade, A.A.1
-
128
-
-
84972567464
-
Quasigroupes parastrophiques. Expressions et identités
-
A. A. Sade, Quasigroupes parastrophiques. Expressions et identités, Math. Nachr., 20 (1958), pp. 73-106.
-
(1958)
Math. Nachr.
, vol.20
, pp. 73-106
-
-
Sade, A.A.1
-
130
-
-
0011051114
-
Autotopies des quasigroupes et des systémes associatifs
-
A. A. Sade, Autotopies des quasigroupes et des systémes associatifs, Arch. Math. (Brno), 4 (1968), pp. 1-23.
-
(1968)
Arch. Math. (Brno)
, vol.4
, pp. 1-23
-
-
Sade, A.A.1
-
131
-
-
77955685357
-
Morphismes de quasigroupes. Tables
-
A. A. Sade, Morphismes de quasigroupes. Tables, Univ. Lisboa Revista Fac. Ci. A, 13 (1970/71), pp. 149-172.
-
(1970)
Univ. Lisboa Revista Fac. Ci. A
, vol.13
, pp. 149-172
-
-
Sade, A.A.1
-
132
-
-
77955682905
-
A simplified method of enumerating Latin squares by MacMahon's differential operators; I. the 6 × 6 squares
-
P. N. Saxena, A simplified method of enumerating Latin squares by MacMahon's differential operators; I. the 6 × 6 squares, J. Indian Soc. Agricultural Statist., 2 (1950), pp. 161-188.
-
(1950)
J. Indian Soc. Agricultural Statist.
, vol.2
, pp. 161-188
-
-
Saxena, P.N.1
-
133
-
-
26044453374
-
A simplified method of enumerating Latin squares by MacMahon's differential operators; II. the 7×7 squares
-
P. N. Saxena, A simplified method of enumerating Latin squares by MacMahon's differential operators; II. the 7×7 squares, J. Indian Soc. Agricultural Statist., 3 (1951), pp. 24-79.
-
(1951)
J. Indian Soc. Agricultural Statist.
, vol.3
, pp. 24-79
-
-
Saxena, P.N.1
-
134
-
-
4243513017
-
Über lateinische Quadrate und Unionen
-
E. Schönhardt, Über lateinische Quadrate und Unionen, J. Reine Angew. Math., 163 (1930), pp. 183-229.
-
(1930)
J. Reine Angew. Math.
, vol.163
, pp. 183-229
-
-
Schönhardt, E.1
-
135
-
-
0010786363
-
A short proof of Minc's conjecture
-
A. Schrijver, A short proof of Minc's conjecture, J. Combin. Theory Ser. A, 25 (1978), pp. 80-83.
-
(1978)
J. Combin. Theory Ser. A
, vol.25
, pp. 80-83
-
-
Schrijver, A.1
-
136
-
-
34447600434
-
Ueber v. Staudt's Rechnung mit Würfen und verwandte Processe
-
E. Schröder, Ueber v. Staudt's Rechnung mit Würfen und verwandte Processe, Math. Ann., 10 (1876), pp. 289-317.
-
(1876)
Math. Ann.
, vol.10
, pp. 289-317
-
-
Schröder, E.1
-
137
-
-
4243366827
-
Ueber eine eigenthümliche Bestimmung einer Function durch formale Anforderungen
-
E. Schröder, Ueber eine eigenthümliche Bestimmung einer Function durch formale Anforderungen, J. Reine Angew. Math., 90 (1881), pp. 189-220.
-
(1881)
J. Reine Angew. Math.
, vol.90
, pp. 189-220
-
-
-
138
-
-
0041016977
-
A formula for the number of Latin squares
-
J.-Y. Shao and W.-D. Wei, A formula for the number of Latin squares, Discrete Math., 110 (1992), pp. 293-296.
-
(1992)
Discrete Math.
, vol.110
, pp. 293-296
-
-
Shao, J.-Y.1
Wei, W.-D.2
-
139
-
-
84966204936
-
On parastrophic algebras
-
J. B. Shaw, On parastrophic algebras, Trans. Amer. Math. Soc., 16 (1915), pp. 361-370.
-
(1915)
Trans. Amer. Math. Soc.
, vol.16
, pp. 361-370
-
-
Shaw, J.B.1
-
140
-
-
84968491264
-
Concerning a conjecture of Marshall Hall
-
R. Sinkhorn, Concerning a conjecture of Marshall Hall, Proc. Amer. Math. Soc., 21 (1969), pp. 197-201.
-
(1969)
Proc. Amer. Math. Soc.
, vol.21
, pp. 197-201
-
-
Sinkhorn, R.1
-
141
-
-
0032375174
-
A note on the asymptotic number of Latin rectangles
-
I. Skau, A note on the asymptotic number of Latin rectangles, European J. Combin., 19 (1998), pp. 617-620.
-
(1998)
European J. Combin.
, vol.19
, pp. 617-620
-
-
Skau, I.1
-
143
-
-
12144276721
-
A new construction of Latin squares. II. The number of Latin squares is strictly increasing
-
B. Smetaniuk, A new construction of Latin squares. II. The number of Latin squares is strictly increasing, Ars Combin., 14 (1982), pp. 131-145.
-
(1982)
Ars Combin.
, vol.14
, pp. 131-145
-
-
Smetaniuk, B.1
-
144
-
-
77955674775
-
-
Homotopies of central quasigroups. Submitted
-
J. D. H. Smith, Homotopies of central quasigroups. Submitted.
-
-
-
Smith, J.D.H.1
-
145
-
-
0000410641
-
Differentiably finite power series
-
R. P. Stanley, Differentiably finite power series, European J. Combin., 1 (1980), pp. 175-188.
-
(1980)
European J. Combin.
, vol.1
, pp. 175-188
-
-
Stanley, R.P.1
-
146
-
-
0011001087
-
Asymptotic evaluation of the number of Latin rectangles
-
C. M. Stein, Asymptotic evaluation of the number of Latin rectangles, J. Combin. Theory Ser. A, 25 (1978), pp. 38-49.
-
(1978)
J. Combin. Theory Ser. A
, vol.25
, pp. 38-49
-
-
Stein, C.M.1
-
149
-
-
85013896693
-
Foundations of quasigroups
-
S. K. Stein, Foundations of quasigroups, Proc. Natl. Acad. Sci. USA, 42 (1956), pp. 545-546.
-
(1956)
Proc. Natl. Acad. Sci. USA
, vol.42
, pp. 545-546
-
-
Stein, S.K.1
-
150
-
-
84968497860
-
On the foundations of quasigroups
-
S. K. Stein, On the foundations of quasigroups, Trans. Amer. Math. Soc., 85 (1957), pp. 228-256.
-
(1957)
Trans. Amer. Math. Soc.
, vol.85
, pp. 228-256
-
-
Stein, S.K.1
-
151
-
-
77955671306
-
-
The parity of the number of quasigroups. Submitted
-
D. S. Stones, The parity of the number of quasigroups. Submitted.
-
-
-
Stones, D.S.1
-
152
-
-
77955668782
-
-
D. S. Stones, (2009). http://code.google.com/p/latinrectangles/downloads/list.
-
(2009)
-
-
Stones, D.S.1
-
154
-
-
77955685994
-
Compound orthomorphisms of the cyclic group
-
D. S. Stones and I. M. Wanless, Compound orthomorphisms of the cyclic group, Finite Fields Appl., 16 (2010), pp. 277-289.
-
(2010)
Finite Fields Appl.
, vol.16
, pp. 277-289
-
-
Stones, D.S.1
Wanless, I.M.2
-
155
-
-
77955667006
-
-
A congruence connecting Latin rectangles and partial orthomorphisms. Submitted
-
D. S. Stones, A congruence connecting Latin rectangles and partial orthomorphisms. Submitted.
-
-
-
Stones, D.S.1
-
156
-
-
77955674335
-
-
How not to prove the Alon-Tarsi Conjecture. Submitted
-
D. S. Stones, How not to prove the Alon-Tarsi Conjecture. Submitted.
-
-
-
Stones, D.S.1
-
157
-
-
76449095025
-
Divisors of the number of Latin rectangles
-
D. S. Stones, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A, 117 (2010), pp. 204-215.
-
(2010)
J. Combin. Theory Ser. A
, vol.117
, pp. 204-215
-
-
Stones, D.S.1
-
158
-
-
0012037198
-
Le probléme des 36 officers
-
G. Tarry, Le probléme des 36 officers, Ass. Franc. Paris, 29 (1901), pp. 170-203.
-
(1901)
Ass. Franc. Paris
, vol.29
, pp. 170-203
-
-
Tarry, G.1
-
159
-
-
84968494224
-
Certain congruences on quasigroups
-
H. A. Thurston, Certain congruences on quasigroups, Proc. Amer. Math. Soc., 3 (1952), pp. 10-12.
-
(1952)
Proc. Amer. Math. Soc.
, vol.3
, pp. 10-12
-
-
Thurston, H.A.1
-
160
-
-
0036925752
-
On permanents of random doubly stochastic matrices and on asymptotic estimates for the number of Latin rectangles and Latin squares
-
A. N. Timashov, On permanents of random doubly stochastic matrices and on asymptotic estimates for the number of Latin rectangles and Latin squares, Discrete Math. Appl., 12 (2002), pp. 431-452.
-
(2002)
Discrete Math. Appl.
, vol.12
, pp. 431-452
-
-
Timashov, A.N.1
-
162
-
-
76449106636
-
Symmetric functions, Latin squares and Van der Corput's "scriptum 3"
-
D. C. van Leijenhorst, Symmetric functions, Latin squares and Van der Corput's "scriptum 3", Expo. Math., 18 (2000), pp. 343-356.
-
(2000)
Expo. Math.
, vol.18
, pp. 343-356
-
-
van Leijenhorst, D.C.1
-
164
-
-
4243587671
-
Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles
-
I. M. Wanless, Perfect factorisations of bipartite graphs and Latin squares without proper subrectangles, Electron. J. Combin., 6 (1999). R9, 16 pp.
-
(1999)
Electron. J. Combin.
, vol.6
-
-
Wanless, I.M.1
-
166
-
-
21244476688
-
Atomic Latin squares based on cyclotomic orthomorphisms
-
I. M. Wanless, Atomic Latin squares based on cyclotomic orthomorphisms, Electron. J. Combin., 12 (2005). R22, 23 pp.
-
(2005)
Electron. J. Combin.
, vol.12
-
-
Wanless, I.M.1
-
167
-
-
18744374878
-
Symmetries that Latin squares inherit from 1-factorizations
-
I. M. Wanless and E. C. Ihrig, Symmetries that Latin squares inherit from 1-factorizations, J. Combin. Des., 13 (2005), pp. 157-172.
-
(2005)
J. Combin. Des.
, vol.13
, pp. 157-172
-
-
Wanless, I.M.1
Ihrig, E.C.2
-
168
-
-
0040994380
-
The number of Latin squares of order eight
-
M. B. Wells, The number of Latin squares of order eight, J. Combin. Theory, 3 (1967), pp. 98-99.
-
(1967)
J. Combin. Theory
, vol.3
, pp. 98-99
-
-
Wells, M.B.1
-
170
-
-
6244228084
-
A logical expansion in mathematics
-
H. Whitney, A logical expansion in mathematics, Bull. Amer. Math. Soc., 38 (1932), pp. 572-579.
-
(1932)
Bull. Amer. Math. Soc.
, vol.38
, pp. 572-579
-
-
Whitney, H.1
-
171
-
-
9744257206
-
What is an answer?
-
H. S. Wilf, What is an answer?, Amer. Math. Monthly, 89 (1982), pp. 289-292.
-
(1982)
Amer. Math. Monthly
, vol.89
, pp. 289-292
-
-
Wilf, H.S.1
-
172
-
-
0039145872
-
On the asymptotic number of Latin rectangles
-
K. Yamamoto, On the asymptotic number of Latin rectangles, Japan. J. Math., 21 (1951), pp. 113-119.
-
(1951)
Japan. J. Math.
, vol.21
, pp. 113-119
-
-
Yamamoto, K.1
-
173
-
-
85013950846
-
Note on enumeration of 7 × 7 Latin squares
-
K. Yamamoto, Note on enumeration of 7 × 7 Latin squares, Bull. Math. Statist., 5 (1952), pp. 1-8.
-
(1952)
Bull. Math. Statist.
, vol.5
, pp. 1-8
-
-
Yamamoto, K.1
-
174
-
-
77955693516
-
On Latin Squares
-
In Japanese
-
K. Yamamoto, On Latin squares, Sǔgaku, 12 (1960/61), pp. 67-79. In Japanese.
-
(1960)
Sǔgaku
, vol.12
, pp. 67-79
-
-
Yamamoto, K.1
-
176
-
-
0031191892
-
The Cayley determinant of the determinant tensor and the Alon-Tarsi Conjecture
-
P. Zappa, The Cayley determinant of the determinant tensor and the Alon-Tarsi Conjecture, Adv. in Appl. Math., 13 (1997), pp. 31-44.
-
(1997)
Adv. in Appl. Math.
, vol.13
, pp. 31-44
-
-
Zappa, P.1
-
178
-
-
59249085270
-
Counting solutions for the N-queens and Latin square problems by Monte Carlo simulations
-
C. Zhang and J. Ma, Counting solutions for the N-queens and Latin square problems by Monte Carlo simulations, Phys. Rev. E, 79 (2009). 016703.
-
(2009)
Phys. Rev. E
, vol.79
, pp. 016703
-
-
Zhang, C.1
Ma, J.2
|