-
1
-
-
26044453102
-
How many Latin squares are there?
-
R. Alter, How many Latin squares are there? Amer. Math. Monthly 82 (1975) 632-634.
-
(1975)
Amer. Math. Monthly
, vol.82
, pp. 632-634
-
-
Alter, R.1
-
2
-
-
5844329530
-
The number of 9 × 9 Latin squares
-
S.E. Bammel and J. Rothstein, The number of 9 × 9 Latin squares, Discrete Math. 11 (1975) 93-95.
-
(1975)
Discrete Math.
, vol.11
, pp. 93-95
-
-
Bammel, S.E.1
Rothstein, J.2
-
3
-
-
5244383602
-
Enumeration of Latin squares with application to order 8
-
J.W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory 5 (1968) 177-184.
-
(1968)
J. Combin. Theory
, vol.5
, pp. 177-184
-
-
Brown, J.W.1
-
5
-
-
0043072005
-
Recherches sur une nouvelle espèce de quarrés magiques
-
L. Euler, Recherches sur une nouvelle espèce de quarrés magiques, Verh. Zeeuwsch Gennot. Weten Vliss 9 (1782) 85-239.
-
(1782)
Verh. Zeeuwsch Gennot. Weten Vliss
, vol.9
, pp. 85-239
-
-
Euler, L.1
-
6
-
-
0345905842
-
Sur les permutations carrés
-
M. Frolov, Sur les permutations carrés, J. de Math. spéc. IV (1890) 8-11, 25-30.
-
(1890)
J. de Math. Spéc.
, vol.4
, pp. 8-11
-
-
Frolov, M.1
-
7
-
-
38249020159
-
Asymptotic enumeration of Latin rectangles
-
C.D. Godsil and B.D. McKay, Asymptotic enumeration of Latin rectangles, J. Combin. Theory Ser. B 48 (1990) 19-44.
-
(1990)
J. Combin. Theory Ser. B
, vol.48
, pp. 19-44
-
-
Godsil, C.D.1
McKay, B.D.2
-
9
-
-
26044432077
-
How many i-j reduced Latin squares are there?
-
G.L. Mullen, How many i-j reduced Latin squares are there? Amer. Math. Monthly 85 (1978) 751-752.
-
(1978)
Amer. Math. Monthly
, vol.85
, pp. 751-752
-
-
Mullen, G.L.1
-
13
-
-
0039977014
-
Maximising the permanent of (0. 1)-matrices and the number of extensions of Latin rectangles
-
R11
-
B.D. McKay and I.M. Wanless, Maximising the permanent of (0. 1)-matrices and the number of extensions of Latin rectangles, Electron. J. Combin. 5 (1998) #R11 20 pp.
-
(1998)
Electron. J. Combin.
, vol.5
-
-
McKay, B.D.1
Wanless, I.M.2
-
14
-
-
0011271917
-
The 7 × 7 squares
-
H.W. Norton, The 7 × 7 squares, Ann. Eugenics 9 (1939) 269-307.
-
(1939)
Ann. Eugenics
, vol.9
, pp. 269-307
-
-
Norton, H.W.1
-
16
-
-
26044453374
-
A simplified method of enumerating Latin squares by MacMahon's differential operators; II. The 7 × 7 Latin squares
-
P.M. Saxena, A simplified method of enumerating Latin squares by MacMahon's differential operators; II. The 7 × 7 Latin squares, J. Indian Soc. Agricultural Statist. 3 ( 1951) 24-79.
-
(1951)
J. Indian Soc. Agricultural Statist.
, vol.3
, pp. 24-79
-
-
Saxena, P.M.1
-
17
-
-
0041016977
-
A formula for the number of Latin squares
-
J.Y. Shao and W.D. Wei, A formula for the number of Latin squares, Discrete Math. 110 (1992) 293-296.
-
(1992)
Discrete Math.
, vol.110
, pp. 293-296
-
-
Shao, J.Y.1
Wei, W.D.2
-
18
-
-
0012037198
-
Le problème des 36 officiers
-
G. Tarry, Le problème des 36 officiers, Ass. Franc. Paris 29 (1900) 170-203.
-
(1900)
Ass. Franc. Paris
, vol.29
, pp. 170-203
-
-
Tarry, G.1
-
20
-
-
0040994380
-
The number of Latin squares of order eight
-
M.B. Wells, The number of Latin squares of order eight, J. Combin. Theory 3 (1967) 98-99.
-
(1967)
J. Combin. Theory
, vol.3
, pp. 98-99
-
-
Wells, M.B.1
|