메뉴 건너뛰기




Volumn 9, Issue 3, 2005, Pages 335-344

On the number of Latin squares

Author keywords

1 factorisation; Enumeration; Latin square; Permanent; Regular bipartite graph

Indexed keywords


EID: 26044433646     PISSN: 02180006     EISSN: None     Source Type: Journal    
DOI: 10.1007/s00026-005-0261-7     Document Type: Article
Times cited : (152)

References (21)
  • 1
    • 26044453102 scopus 로고
    • How many Latin squares are there?
    • R. Alter, How many Latin squares are there? Amer. Math. Monthly 82 (1975) 632-634.
    • (1975) Amer. Math. Monthly , vol.82 , pp. 632-634
    • Alter, R.1
  • 2
    • 5844329530 scopus 로고
    • The number of 9 × 9 Latin squares
    • S.E. Bammel and J. Rothstein, The number of 9 × 9 Latin squares, Discrete Math. 11 (1975) 93-95.
    • (1975) Discrete Math. , vol.11 , pp. 93-95
    • Bammel, S.E.1    Rothstein, J.2
  • 3
    • 5244383602 scopus 로고
    • Enumeration of Latin squares with application to order 8
    • J.W. Brown, Enumeration of Latin squares with application to order 8, J. Combin. Theory 5 (1968) 177-184.
    • (1968) J. Combin. Theory , vol.5 , pp. 177-184
    • Brown, J.W.1
  • 5
    • 0043072005 scopus 로고
    • Recherches sur une nouvelle espèce de quarrés magiques
    • L. Euler, Recherches sur une nouvelle espèce de quarrés magiques, Verh. Zeeuwsch Gennot. Weten Vliss 9 (1782) 85-239.
    • (1782) Verh. Zeeuwsch Gennot. Weten Vliss , vol.9 , pp. 85-239
    • Euler, L.1
  • 6
    • 0345905842 scopus 로고
    • Sur les permutations carrés
    • M. Frolov, Sur les permutations carrés, J. de Math. spéc. IV (1890) 8-11, 25-30.
    • (1890) J. de Math. Spéc. , vol.4 , pp. 8-11
    • Frolov, M.1
  • 7
    • 38249020159 scopus 로고
    • Asymptotic enumeration of Latin rectangles
    • C.D. Godsil and B.D. McKay, Asymptotic enumeration of Latin rectangles, J. Combin. Theory Ser. B 48 (1990) 19-44.
    • (1990) J. Combin. Theory Ser. B , vol.48 , pp. 19-44
    • Godsil, C.D.1    McKay, B.D.2
  • 9
    • 26044432077 scopus 로고
    • How many i-j reduced Latin squares are there?
    • G.L. Mullen, How many i-j reduced Latin squares are there? Amer. Math. Monthly 85 (1978) 751-752.
    • (1978) Amer. Math. Monthly , vol.85 , pp. 751-752
    • Mullen, G.L.1
  • 13
    • 0039977014 scopus 로고    scopus 로고
    • Maximising the permanent of (0. 1)-matrices and the number of extensions of Latin rectangles
    • R11
    • B.D. McKay and I.M. Wanless, Maximising the permanent of (0. 1)-matrices and the number of extensions of Latin rectangles, Electron. J. Combin. 5 (1998) #R11 20 pp.
    • (1998) Electron. J. Combin. , vol.5
    • McKay, B.D.1    Wanless, I.M.2
  • 14
    • 0011271917 scopus 로고
    • The 7 × 7 squares
    • H.W. Norton, The 7 × 7 squares, Ann. Eugenics 9 (1939) 269-307.
    • (1939) Ann. Eugenics , vol.9 , pp. 269-307
    • Norton, H.W.1
  • 16
    • 26044453374 scopus 로고
    • A simplified method of enumerating Latin squares by MacMahon's differential operators; II. The 7 × 7 Latin squares
    • P.M. Saxena, A simplified method of enumerating Latin squares by MacMahon's differential operators; II. The 7 × 7 Latin squares, J. Indian Soc. Agricultural Statist. 3 ( 1951) 24-79.
    • (1951) J. Indian Soc. Agricultural Statist. , vol.3 , pp. 24-79
    • Saxena, P.M.1
  • 17
    • 0041016977 scopus 로고
    • A formula for the number of Latin squares
    • J.Y. Shao and W.D. Wei, A formula for the number of Latin squares, Discrete Math. 110 (1992) 293-296.
    • (1992) Discrete Math. , vol.110 , pp. 293-296
    • Shao, J.Y.1    Wei, W.D.2
  • 18
    • 0012037198 scopus 로고
    • Le problème des 36 officiers
    • G. Tarry, Le problème des 36 officiers, Ass. Franc. Paris 29 (1900) 170-203.
    • (1900) Ass. Franc. Paris , vol.29 , pp. 170-203
    • Tarry, G.1
  • 20
    • 0040994380 scopus 로고
    • The number of Latin squares of order eight
    • M.B. Wells, The number of Latin squares of order eight, J. Combin. Theory 3 (1967) 98-99.
    • (1967) J. Combin. Theory , vol.3 , pp. 98-99
    • Wells, M.B.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.