-
1
-
-
84890216326
-
An attempt for construction of a triple of pairwise mutually orthogonal Latin squares on 10 elements
-
D. M. Acketa and S. Matić-Kekić, An attempt for construction of a triple of pairwise mutually orthogonal Latin squares on 10 elements, Zb Rad Prirod-Mat Fak Ser Mat 25 (1995), 141-153.
-
(1995)
Zb Rad Prirod-Mat Fak ser Mat
, vol.25
, pp. 141-153
-
-
Acketa, D.M.1
Matić-Kekić, S.2
-
2
-
-
0037614450
-
Quasigroups. II
-
A. A. Albert, Quasigroups. II., Trans Amer Math Soc 55 (1944), 401-419.
-
(1944)
Trans Amer Math Soc
, vol.55
, pp. 401-419
-
-
Albert, A.A.1
-
3
-
-
84885732615
-
Construction with the aid of a computer of all Latin squares of order 8 (Russian)
-
Moscow, Nauka, 187
-
V. L. Arlazarov, A. M. Baraev, Ya. Yu. Gol'fand, and I. A. Faradžev, Construction with the aid of a computer of all Latin squares of order 8 (Russian), Algorithmic investigations in combinatoric (Moscow, Nauka, 1978), pp. 129-141, 187.
-
(1978)
Algorithmic Investigations in Combinatoric
, pp. 129-141
-
-
Arlazarov, V.L.1
Baraev, A.M.2
Gol'fand, Yu.3
Faradžev, I.A.4
-
4
-
-
5844329530
-
The number of 9 ?9 Latin squares
-
S. E. Bammel and J. Rothstein, The number of 9 ?9 Latin squares, Discrete Math 11 (1975), 93-95.
-
(1975)
Discrete Math
, vol.11
, pp. 93-95
-
-
Bammel, S.E.1
Rothstein, J.2
-
5
-
-
0000804310
-
On the falsity of Euler's conjecture about the non-existence of two orthogonal Latin squares of order 4t + 2
-
R. C. Bose and S. S. Shrikhande, On the falsity of Euler's conjecture about the non-existence of two orthogonal Latin squares of order 4t + 2, Proc Nat Acad Sci USA 45 (1959), 734-737.
-
(1959)
Proc Nat Acad Sci USA
, vol.45
, pp. 734-737
-
-
Bose, R.C.1
Shrikhande, S.S.2
-
6
-
-
0000675946
-
Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture
-
R. C. Bose, S. S. Shrikhande, and E. T. Parker, Further results on the construction of mutually orthogonal Latin squares and the falsity of Euler's conjecture, Can J Math 12 (1960), 189-203.
-
(1960)
Can J Math
, vol.12
, pp. 189-203
-
-
Bose, R.C.1
Shrikhande, S.S.2
Parker, E.T.3
-
7
-
-
84890186811
-
-
Private communication
-
C. G. Bower, Private communication (2000).
-
(2000)
-
-
Bower, C.G.1
-
8
-
-
77955697551
-
A note on isomorphism classes of reduced Latin squares of order 7
-
L. J. Brant and G. L. Mullen, A note on isomorphism classes of reduced Latin squares of order 7, Utilitas Math 27 (1985), 261-263.
-
(1985)
Utilitas Math
, vol.27
, pp. 261-263
-
-
Brant, L.J.1
Mullen, G.L.2
-
9
-
-
0001217815
-
Four MOLS of order 10 with a hole of order 2
-
A. E. Brouwer, Four MOLS of order 10 with a hole of order 2, J Statist Plann Inference 10 (1984), 203-205.
-
(1984)
J Statist Plann Inference
, vol.10
, pp. 203-205
-
-
Brouwer, A.E.1
-
10
-
-
5244383602
-
Enumeration of Latin squares with application to order 8
-
J. W. Brown, Enumeration of Latin squares with application to order 8, J Combin Theory 5 (1968), 177-184.
-
(1968)
J Combin Theory
, vol.5
, pp. 177-184
-
-
Brown, J.W.1
-
11
-
-
49649135019
-
An extension of Mann's theorem to a triple of mutually orthogonal Latin squares of order 10
-
J. W. Brown, An extension of Mann's theorem to a triple of mutually orthogonal Latin squares of order 10, J Combin Theory Ser A 12 (1972), 316-318.
-
(1972)
J Combin Theory ser A
, vol.12
, pp. 316-318
-
-
Brown, J.W.1
-
12
-
-
84864806743
-
A try for three order-10 orthogonal Latin squares
-
J. W. Brown and E. T. Parker, A try for three order-10 orthogonal Latin squares, Congr Numer 36 (1982), 143-144.
-
(1982)
Congr Numer
, vol.36
, pp. 143-144
-
-
Brown, J.W.1
Parker, E.T.2
-
13
-
-
84890246001
-
Some attempts to construct orthogonal latin squares
-
J.W. Brown and E. T. Parker, Some attempts to construct orthogonal Latin squares, Congr Numer 43 (1984), 201-202.
-
(1984)
Congr Numer
, vol.43
, pp. 201-202
-
-
Brown, J.W.1
Parker, E.T.2
-
14
-
-
85013928032
-
An attempt to construct three mols ?10 with a common transversal
-
J.W. Brown and E. T. Parker, An attempt to construct three mols ?10 with a common transversal, Algebras Groups Geom 2 (1985), 258-262.
-
(1985)
Algebras Groups Geom
, vol.2
, pp. 258-262
-
-
Brown, J.W.1
Parker, E.T.2
-
15
-
-
33747627238
-
More on order 10 turn-squares
-
J. W. Brown and E. T. Parker, More on order 10 turn-squares, Ars Combin 35 (1993), 125-127.
-
(1993)
Ars Combin
, vol.35
, pp. 125-127
-
-
Brown, J.W.1
Parker, E.T.2
-
17
-
-
0003938168
-
-
CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL
-
C. J. Colbourn and J. H. Dinitz (Editors), The CRC Handbook of Combinatorial Designs. CRC Press Series on Discrete Mathematics and its Applications. CRC Press, Boca Raton, FL, 1996, 753.
-
(1996)
The CRC Handbook of Combinatorial Designs
, pp. 753
-
-
Colbourn, C.J.1
Dinitz, J.H.2
-
18
-
-
0041406047
-
Mutually orthogonal Latin squares: A brief survey of constructions
-
C. J. Colbourn and J. H. Dinitz, Mutually orthogonal Latin squares: A brief survey of constructions, J Statist Plann Inference 95 (2001), 9-48.
-
(2001)
J Statist Plann Inference
, vol.95
, pp. 9-48
-
-
Colbourn, C.J.1
Dinitz, J.H.2
-
19
-
-
0002557736
-
On embedding incomplete symmetric latin squares
-
A. Cruse, On embedding incomplete symmetric latin squares, J Comb Theory Ser A, 16 (1974), 18-22.
-
(1974)
J Comb Theory ser A
, vol.16
, pp. 18-22
-
-
Cruse, A.1
-
22
-
-
5244287637
-
-
Internat. CNRS, Univ. Orsay, Orsay,(CNRS Paris, 1978)
-
I. A. Faradžev, Constructive enumeration of combinatorial objects. Problèmes combinatoires et théorie des graphes, Colloq. Internat. CNRS, Univ. Orsay, Orsay, 1976, (CNRS Paris, 1978) pp. 131-135.
-
(1976)
Constructive Enumeration of Combinatorial Objects. Problèmes Combinatoires et Théorie des Graphes, Colloq
, pp. 131-135
-
-
Faradžev, I.A.1
-
24
-
-
0345905842
-
Sur les permutations carrées
-
25-30
-
M. Frolov, Sur les permutations carrées, J de Math spéc IV (1890), 8-11, 25-30.
-
(1890)
J de Math Spéc
, vol.4
, pp. 8-11
-
-
Frolov, M.1
-
25
-
-
84890146637
-
-
Private communication
-
P. Guérin, Private communication (2001).
-
(2001)
-
-
Guérin, P.1
-
26
-
-
76449111481
-
The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares
-
S. M. Jacob, The enumeration of the Latin rectangle of depth three by means of a formula of reduction, with other theorems relating to non-clashing substitutions and Latin squares, Proc London Math Soc 31 (1930), 329-354.
-
(1930)
Proc London Math Soc
, vol.31
, pp. 329-354
-
-
Jacob, S.M.1
-
27
-
-
0344526851
-
Generating uniformly distributed random Latin squares
-
M. T. Jacobson and P. Matthews, Generating uniformly distributed random Latin squares, J Combin Des 4 (1996), 405-437.
-
(1996)
J Combin des
, vol.4
, pp. 405-437
-
-
Jacobson, M.T.1
Matthews, P.2
-
28
-
-
0040444141
-
On the number of 8 ?8 Latin squares
-
G. Kolesova, C. W. H. Lam, and L. Thiel, On the number of 8 ?8 Latin squares, J Combin Theory Ser A, 54 (1990), 143-148.
-
(1990)
J Combin Theory ser A
, vol.54
, pp. 143-148
-
-
Kolesova, G.1
Lam, C.W.H.2
Thiel, L.3
-
29
-
-
0000853821
-
The nonexistence of finite projective planes of order 10
-
C. W. H. Lam, L. Thiel, and S. Swiercz, The nonexistence of finite projective planes of order 10, Can J Math 41 (1989), 1117-1123.
-
(1989)
Can J Math
, vol.41
, pp. 1117-1123
-
-
Lam, C.W.H.1
Thiel, L.2
Swiercz, S.3
-
31
-
-
0345742420
-
Atomic latin squares of order eleven
-
B. M. Maenhaut and I. M. Wanless, Atomic Latin squares of order eleven, J Combin Des 12 (2004), 12-34.
-
(2004)
J Combin des
, vol.12
, pp. 12-34
-
-
Maenhaut, B.M.1
Wanless, I.M.2
-
33
-
-
0001540056
-
Isomorph-free exhaustive generation
-
B. D. McKay, Isomorph-free exhaustive generation, J Algorithms, 26 (1998), 306-324; also errata at http://cs.anu.edu.au/~bdm/publications.
-
(1998)
J Algorithms
, vol.26
, pp. 306-324
-
-
McKay, B.D.1
-
34
-
-
0040422897
-
Latin squares of order ten
-
B. D. McKay and E. Rogoyski, Latin squares of order ten, Electron J Combin 2 (1995), #N3 (4 pp).
-
(1995)
Electron J Combin
, vol.2
, Issue.3
, pp. 4
-
-
McKay, B.D.1
Rogoyski, E.2
-
35
-
-
26044433646
-
On the number of latin squares
-
B. D. McKay and I. M. Wanless, On the number of Latin squares, Ann Combin 9 (2005), 335-344.
-
(2005)
Ann Combin
, vol.9
, pp. 335-344
-
-
McKay, B.D.1
Wanless, I.M.2
-
36
-
-
84890248131
-
Negative results for orthogonal triples of Latin squares of order 10
-
W. Myrvold, Negative results for orthogonal triples of Latin squares of order 10, J Combin Math Combin Comput 29 (1999), 95-105.
-
(1999)
J Combin Math Combin Comput
, vol.29
, pp. 95-105
-
-
Myrvold, W.1
-
37
-
-
84890154885
-
One more attempt to construct POLS
-
(Russian). Akad. Nauk Ukrain. SSR Inst Mat, Kiev
-
A. V. Nazarok, One more attempt to construct POLS(10,3) (Russian), Asymptotic methods in problems in the theory of random evolutions, Akad. Nauk Ukrain. SSR Inst Mat, Kiev (1991), pp. 89-93.
-
(1991)
Asymptotic Methods in Problems in the Theory of Random Evolutions
, vol.10
, Issue.3
, pp. 89-93
-
-
Nazarok, A.V.1
-
38
-
-
0000738567
-
A lemma that is not burnside's
-
P. M. Neumann, A lemma that is not Burnside's, Math Sci 4 (1979), 133-141.
-
(1979)
Math Sci
, vol.4
, pp. 133-141
-
-
Neumann, P.M.1
-
39
-
-
0011271917
-
The 7×7 squares
-
H. W. Norton, The 7×7 squares, Ann Eugenics 9 (1939), 269-307.
-
(1939)
Ann Eugenics
, vol.9
, pp. 269-307
-
-
Norton, H.W.1
-
40
-
-
0000582911
-
Orthogonal latin squares
-
E. T. Parker, Orthogonal latin squares, Proc Nat Acad Sci USA 45 (1959), 859-862.
-
(1959)
Proc Nat Acad Sci USA
, vol.45
, pp. 859-862
-
-
Parker, E.T.1
-
41
-
-
11244262777
-
Computer investigation of orthogonal Latin squares of order ten
-
Amer Math Soc
-
E. T. Parker, Computer investigation of orthogonal Latin squares of order ten, Proc Sympos Appl Math Vol XV, (Amer Math Soc, 1963) pp. 73-81.
-
(1963)
Proc Sympos Appl Math
, vol.15
, pp. 73-81
-
-
Parker, E.T.1
-
42
-
-
58149405524
-
Nonexistence of a triple of orthogonal Latin squares of order 10 with group of order 25-A search made short
-
E. T. Parker, Nonexistence of a triple of orthogonal Latin squares of order 10 with group of order 25-A search made short, J Combin Theory Ser A, 19 (1975), 243-244.
-
(1975)
J Combin Theory ser A
, vol.19
, pp. 243-244
-
-
Parker, E.T.1
-
44
-
-
84890238108
-
-
QSCGZ (pseudonym). October
-
QSCGZ (pseudonym), Anonymous electronic posting to "loopforum", October 2001. http://groups.yahoo.com/group/loopforum/
-
(2001)
Anonymous Electronic Posting to Loopforum
-
-
-
45
-
-
0001453807
-
Every one a winner
-
R. C. Read, Every one a winner, Annals Discrete Math 2 (1978), 107-120.
-
(1978)
Annals Discrete Math
, vol.2
, pp. 107-120
-
-
Read, R.C.1
-
47
-
-
0011319304
-
An omission in norton' s list of 7 ×7 squares
-
A. Sade, An omission in Norton's list of 7 ×7 squares, Ann Math Stat 22 (1951), 306-307.
-
(1951)
Ann Math Stat
, vol.22
, pp. 306-307
-
-
Sade, A.1
-
49
-
-
26044453374
-
A simplified method of enumerating Latin squares by macmahon's differential operators; II. The 7 ×7 Latin squares
-
P. N. Saxena, A simplified method of enumerating Latin squares by MacMahon's differential operators; II. The 7 ×7 Latin squares, J Indian Soc Agric Statistics 3 (1951), 24-79.
-
(1951)
J Indian Soc Agric Statistics
, vol.3
, pp. 24-79
-
-
Saxena, P.N.1
-
50
-
-
4243513017
-
Über lateinische quadrate und unionen
-
E. Schönhardt, Über lateinische Quadrate und Unionen, J Reine Angew Math 163 (1930), 183-230.
-
(1930)
J Reine Angew Math
, vol.163
, pp. 183-230
-
-
Schönhardt, E.1
-
51
-
-
0041016977
-
A formula for the number of Latin squares
-
J. Y. Shao andW. D.Wei, A formula for the number of Latin squares, Discrete Math 110 (1992), 293-296.
-
(1992)
Discrete Math
, vol.110
, pp. 293-296
-
-
Shao, J.Y.1
Wei, W.D.2
-
52
-
-
0002259244
-
A note on mutually orthogonal Latin squares
-
S. S. Shrikhande, A note on mutually orthogonal Latin squares, Sankhyā Ser A, 23 (1961), 115-116.
-
(1961)
Sankhyā ser A
, vol.23
, pp. 115-116
-
-
Shrikhande, S.S.1
-
53
-
-
0012037198
-
Le problème des 36 officiers
-
G. Tarry, Le problème des 36 officiers, Ass Franç Paris 29 (1900), 170-203.
-
(1900)
Ass Franç Paris
, vol.29
, pp. 170-203
-
-
Tarry, G.1
-
54
-
-
0035637896
-
Answers to questions by Dénes on Latin power sets
-
I. M. Wanless, Answers to questions by Dénes on Latin power sets, Eur J Combin 22 (2001), 1009-1020.
-
(2001)
Eur J Combin
, vol.22
, pp. 1009-1020
-
-
Wanless, I.M.1
-
55
-
-
0040994380
-
The number of Latin squares of order eight
-
M. B. Wells, The number of Latin squares of order eight, J Combin Theory 3 (1967), 98-99.
-
(1967)
J Combin Theory
, vol.3
, pp. 98-99
-
-
Wells, M.B.1
|