-
1
-
-
26844542208
-
Exponential lower bounds for the numbers of Skolem-type sequences
-
G.K. Bennett, M.J. Grannell, T.S. Griggs, Exponential lower bounds for the numbers of Skolem-type sequences, Ars Combin. 73 (2004) 101-106. (Pubitemid 41453414)
-
(2004)
Ars Combinatoria
, vol.73
, pp. 101-106
-
-
Bennett, G.K.1
Grannell, M.J.2
Griggs, T.S.3
-
2
-
-
84861230401
-
Cubic reciprocity explicit primality tests for h · 3k ± 1
-
Fields Inst. Commun. Amer. Math. Soc.
-
W. Bosma, Cubic reciprocity explicit primality tests for h · 3k ± 1, in: High Primes and Misdemeanours, in: Fields Inst. Commun., vol. 41, Amer. Math. Soc., 2004, pp. 77-89.
-
(2004)
High Primes and Misdemeanours
, vol.41
, pp. 77-89
-
-
Bosma, W.1
-
3
-
-
64249124066
-
On completing three cyclically generated transversals to a Latin square
-
N.J. Cavenagh, C. Hämäläinen, A.M. Nelson, On completing three cyclically generated transversals to a Latin square, Finite Fields Appl. 15 (2009) 294-303.
-
(2009)
Finite Fields Appl.
, vol.15
, pp. 294-303
-
-
Cavenagh, N.J.1
Hämäläinen, C.2
Nelson, A.M.3
-
4
-
-
70449535538
-
On the number of transversals in Cayley tables of cyclic groups
-
N.J. Cavenagh, I.M. Wanless, On the number of transversals in Cayley tables of cyclic groups, Discrete Appl. Math. 158 (2010) 136-146.
-
(2010)
Discrete Appl. Math.
, vol.158
, pp. 136-146
-
-
Cavenagh, N.J.1
Wanless, I.M.2
-
5
-
-
77957373408
-
Transversals of cyclic Latin squares
-
D. Clark, J.T. Lewis, Transversals of cyclic Latin squares, Congr. Numer. 128 (1997) 113-120.
-
(1997)
Congr. Numer.
, vol.128
, pp. 113-120
-
-
Clark, D.1
Lewis, J.T.2
-
7
-
-
33747230487
-
Estimation of the number of "good" permutations, with applications to cryptography
-
C. Cooper, R. Gilchrist, I.N. Kovalenko, D. Novakovic, Estimation of the number of "good" permutations, with applications to cryptography, Cybernet. Systems Anal. 35 (2000) 688-693.
-
(2000)
Cybernet. Systems Anal.
, vol.35
, pp. 688-693
-
-
Cooper, C.1
Gilchrist, R.2
Kovalenko, I.N.3
Novakovic, D.4
-
9
-
-
0043072005
-
Recherches sur une nouvelle espéce de quarrés magiques
-
Eneström E530, Opera Omnia OI7, 291-392
-
L. Euler, Recherches sur une nouvelle espéce de quarrés magiques, Verh. Zeeuwsch. Gennot. Weten. Vliss. 9 (1782) 85-239, Eneström E530, Opera Omnia OI7, 291-392.
-
Verh. Zeeuwsch. Gennot. Weten. Vliss.
, vol.9
, Issue.1782
, pp. 85-239
-
-
Euler, L.1
-
11
-
-
34248176756
-
On orthogonal orthomorphisms of cyclic and non-abelian groups. II
-
DOI 10.1002/jcd.20138
-
A.B. Evans, On orthogonal orthomorphisms of cyclic and non-abelian groups. II, J. Combin. Des. 15 (2007) 195-209. (Pubitemid 46721617)
-
(2007)
Journal of Combinatorial Designs
, vol.15
, Issue.3
, pp. 195-209
-
-
Evans, A.B.1
-
12
-
-
0041317442
-
Completing partial latin squares with two cyclically generated prescribed diagonals
-
DOI 10.1016/S0097-3165(03)00105-5
-
M. Grüttmüller, Completing partial Latin squares with two cyclically generated prescribed diagonals, J. Combin. Theory Ser. A 103 (2003) 349-362. (Pubitemid 37052469)
-
(2003)
Journal of Combinatorial Theory. Series A
, vol.103
, Issue.2
, pp. 349-362
-
-
Gruttmuller, M.1
-
13
-
-
17444449196
-
Completing partial Latin squares with prescribed diagonals
-
M. Grüttmüller, Completing partial Latin squares with prescribed diagonals, Discrete Appl. Math. 138 (2004) 89-97.
-
(2004)
Discrete Appl. Math.
, vol.138
, pp. 89-97
-
-
Grüttmüller, M.1
-
14
-
-
33747010472
-
Upper bound on the number of complete mappings
-
I.N. Kovalenko, Upper bound on the number of complete mappings, Cybernet. Systems Anal. 32 (1996) 65-68.
-
(1996)
Cybernet. Systems Anal.
, vol.32
, pp. 65-68
-
-
Kovalenko, I.N.1
-
15
-
-
37349025756
-
Applying fast simulation to find the number of good permutations
-
DOI 10.1007/s10559-007-0107-x
-
N.Y. Kuznetsov, Applying fast simulation to find the number of good permutations, Cybernet. Systems Anal. 43 (2007) 830-837. (Pubitemid 350285442)
-
(2007)
Cybernetics and Systems Analysis
, vol.43
, Issue.6
, pp. 830-837
-
-
Kuznetsov, N.Yu.1
-
16
-
-
51049111823
-
Estimating the number of good permutations by a modified fast simulation method
-
N.Y. Kuznetsov, Estimating the number of good permutations by a modified fast simulation method, Cybernet. Systems Anal. 44 (2008) 547-554.
-
(2008)
Cybernet. Systems Anal.
, vol.44
, pp. 547-554
-
-
Kuznetsov, N.Y.1
-
17
-
-
0030223879
-
A combinatorial problem in the class of permutations over the residue ring Zn modulo odd n
-
(in Russian)
-
A.A. Levitskaya, A combinatorial problem in the class of permutations over the residue ring Zn modulo odd n, Problemy Upravlen. Inform. (1996) 99-108 (in Russian).
-
(1996)
Problemy Upravlen. Inform.
, pp. 99-108
-
-
Levitskaya, A.A.1
-
18
-
-
33747622804
-
The number of transversals in a Latin square
-
DOI 10.1007/s10623-006-0012-8
-
B.D. McKay, J.C. McLeod, I.M. Wanless, The number of transversals in a Latin square, Des. Codes Cryptogr. 40 (2006) 269-284. (Pubitemid 44261918)
-
(2006)
Designs, Codes, and Cryptography
, vol.40
, Issue.3
, pp. 269-284
-
-
McKay, B.D.1
McLeod, J.C.2
Wanless, I.M.3
-
19
-
-
26044433646
-
On the number of Latin squares
-
DOI 10.1007/s00026-005-0261-7
-
B.D. McKay, I.M. Wanless, On the number of Latin squares, Ann. Comb. 9 (2005) 335-344. (Pubitemid 41407172)
-
(2005)
Annals of Combinatorics
, vol.9
, Issue.3
, pp. 335-344
-
-
McKay, B.D.1
Wanless, I.M.2
-
21
-
-
34347202798
-
Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen
-
W. Nöbauer, Über Permutationspolynome und Permutationsfunktionen für Primzahlpotenzen, Monatsh. Math. 69 (1965) 230-238.
-
(1965)
Monatsh. Math.
, vol.69
, pp. 230-238
-
-
Nöbauer, W.1
-
22
-
-
84971678692
-
Compatible and conservative functions on residue-class rings of the integers
-
Topics in Number Theory, North-Holland, Amsterdam
-
W. Nöbauer, Compatible and conservative functions on residue-class rings of the integers, in: Proc. Colloq., Debrecen, 1974, in: Topics in Number Theory, vol. 13, North-Holland, Amsterdam, 1976, pp. 245-257.
-
(1974)
Proc. Colloq., Debrecen
, vol.13
, pp. 245-257
-
-
Nöbauer, W.1
-
23
-
-
33746997497
-
Computation of the number of complete mappings for permutations
-
D. Novakovich, Computation of the number of complete mappings for permutations, Cybernet. Systems Anal. 36 (2000) 244-247.
-
(2000)
Cybernet. Systems Anal.
, vol.36
, pp. 244-247
-
-
Novakovich, D.1
-
26
-
-
76449095025
-
Divisors of the number of Latin rectangles
-
D.S. Stones, I.M. Wanless, Divisors of the number of Latin rectangles, J. Combin. Theory Ser. A 117 (2010) 204-215.
-
(2010)
J. Combin. Theory Ser. A
, vol.117
, pp. 204-215
-
-
Stones, D.S.1
Wanless, I.M.2
-
27
-
-
56349096150
-
On Latin queen squares
-
G.H.J. van Rees, On Latin queen squares, Congr. Numer. 31 (1981) 267-273.
-
(1981)
Congr. Numer.
, vol.31
, pp. 267-273
-
-
Van Rees, G.H.J.1
-
29
-
-
84972055187
-
On a problem of Niederreiter and Robinson about finite fields
-
D.Q. Wan, On a problem of Niederreiter and Robinson about finite fields, J. Aust. Math. Soc. Ser. A 41 (1986) 336-338.
-
(1986)
J. Aust. Math. Soc. Ser. A
, vol.41
, pp. 336-338
-
-
Wan, D.Q.1
-
30
-
-
67650661964
-
Transversals in Latin squares
-
I.M. Wanless, Transversals in Latin squares, Quasigroups Related Systems 15 (2007) 169-190.
-
(2007)
Quasigroups Related Systems
, vol.15
, pp. 169-190
-
-
Wanless, I.M.1
|