메뉴 건너뛰기




Volumn 51, Issue 7, 2010, Pages 800-819

Arc refractor methods for adaptive importance sampling on large Bayesian networks under evidential reasoning

Author keywords

Approximate Bayesian inference; Bayesian networks; Probabilistic reasoning; Uncertainty

Indexed keywords

ADAPTIVE IMPORTANCE SAMPLING; ADAPTIVE METHODS; APPROXIMATE BAYESIAN INFERENCE; BAYESIAN METHODS; CONDITIONAL PROBABILITY TABLES; CRITICAL PROBLEMS; ERROR VARIANCE; EVIDENTIAL REASONING; IMPORTANCE FUNCTIONS; IMPORTANCE SAMPLING; OPTIMAL FUNCTION; OPTIMAL IMPORTANCE FUNCTION; POSTERIOR DISTRIBUTIONS; POSTERIOR PROBABILITY; PROBABILISTIC REASONING;

EID: 77955470929     PISSN: 0888613X     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ijar.2010.04.006     Document Type: Article
Times cited : (3)

References (48)
  • 4
    • 0025401005 scopus 로고
    • The computational complexity of probabilistic inference using Bayesian belief networks
    • G.F. Cooper The computational complexity of probabilistic inference using Bayesian belief networks Artificial Intelligence 42 2-3 1990 393 405
    • (1990) Artificial Intelligence , vol.42 , Issue.23 , pp. 393-405
    • Cooper, G.F.1
  • 6
    • 0027560587 scopus 로고
    • Approximating probabilistic inference in Bayesian belief networks is NP-hard
    • P. Dagum, and M. Luby Approximating probabilistic inference in Bayesian belief networks is NP-hard Artificial Intelligence 60 1993 141 153
    • (1993) Artificial Intelligence , vol.60 , pp. 141-153
    • Dagum, P.1    Luby, M.2
  • 7
    • 0028433895 scopus 로고
    • A survey of research in deliberative real-time artificial intelligence
    • A.J. Garvey, and V.R. Lesser A survey of research in deliberative real-time artificial intelligence Real-Time Systems 6 3 1994 317 347
    • (1994) Real-Time Systems , vol.6 , Issue.3 , pp. 317-347
    • Garvey, A.J.1    Lesser, V.R.2
  • 8
    • 34548773085 scopus 로고
    • On a Distributed Anytime Architecture for Probabilistic Reasoning
    • AFIT/EN/TR95-02, Department of Electrical and Computer Engineering, Air Force Institute of Technology
    • E.J. Santos, S.E. Shimony, E. Solomon, E. Williams, On a Distributed Anytime Architecture for Probabilistic Reasoning, AFIT/EN/TR95-02, Department of Electrical and Computer Engineering, Air Force Institute of Technology, Tech. Rep., 1995.
    • (1995) Tech. Rep.
    • Santos, E.J.1    Shimony, S.E.2    Solomon, E.3    Williams, E.4
  • 10
    • 0039223218 scopus 로고
    • Weighting and integrating evidence for stochastic simulation in Bayesian networks
    • Elsevier Science Publishing Company, Inc. New York, NY
    • R. Fung, and K.C. Chang Weighting and integrating evidence for stochastic simulation in Bayesian networks Proceedings of the 5th Conference on Uncertainty in Artificial Intelligence 1989 Elsevier Science Publishing Company, Inc. New York, NY 209 219
    • (1989) Proceedings of the 5th Conference on Uncertainty in Artificial Intelligence , pp. 209-219
    • Fung, R.1    Chang, K.C.2
  • 12
  • 14
    • 0023347981 scopus 로고
    • Evidential reasoning using stochastic simulation of causal models
    • J. Pearl Evidential reasoning using stochastic simulation of causal models Artificial Intelligence 32 2 1987 245 257
    • (1987) Artificial Intelligence , vol.32 , Issue.2 , pp. 245-257
    • Pearl, J.1
  • 15
    • 84987047932 scopus 로고
    • A randomized approximation algorithm for probabilistic inference on Bayesian belief networks
    • R.M. Chavez, and G.F. Cooper A randomized approximation algorithm for probabilistic inference on Bayesian belief networks Networks 20 1990 661 685
    • (1990) Networks , vol.20 , pp. 661-685
    • Chavez, R.M.1    Cooper, G.F.2
  • 18
    • 0006144366 scopus 로고    scopus 로고
    • Computational investigations of low-discrepancy sequences in simulation algorithms for Bayesian networks
    • Morgan Kaufmann Publishers
    • J. Cheng, and M.J. Druzdzel Computational investigations of low-discrepancy sequences in simulation algorithms for Bayesian networks Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence 2000 Morgan Kaufmann Publishers 72 81
    • (2000) Proceedings of the 16th Conference on Uncertainty in Artificial Intelligence , pp. 72-81
    • Cheng, J.1    Druzdzel, M.J.2
  • 21
    • 34648834540 scopus 로고    scopus 로고
    • Theoretical analysis and practical insights on importance sampling in Bayesian networks
    • DOI 10.1016/j.ijar.2006.09.006, PII S0888613X06001277, Special Track on Uncertain Reasoning of the 18th International Florida Artificial Intelligence Research Symposium (FLAIRS 2005)
    • C. Yuan, and M.J. Druzdzel Theoretical analysis and practical insights on importance sampling in Bayesian networks International Journal of Approximate Reasoning 46 2 2007 320 333 (Pubitemid 47464880)
    • (2007) International Journal of Approximate Reasoning , vol.46 , Issue.2 , pp. 320-333
    • Yuan, C.1    Druzdzel, M.J.2
  • 24
    • 0007178970 scopus 로고    scopus 로고
    • A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques
    • L. Hernández, S. Moral, and A. Salmerón A Monte Carlo algorithm for probabilistic propagation in belief networks based on importance sampling and stratified simulation techniques International Journal of Approximate Reasoning 18 1998 53 91
    • (1998) International Journal of Approximate Reasoning , vol.18 , pp. 53-91
    • Hernández, L.1    Moral, S.2    Salmerón, A.3
  • 26
    • 10844241941 scopus 로고    scopus 로고
    • Dynamic importance sampling in Bayesian networks based on probability trees
    • S. Moral, and A. Salmerón Dynamic importance sampling in Bayesian networks based on probability trees International Journal of Approximate Reasoning 38 2005 245 261
    • (2005) International Journal of Approximate Reasoning , vol.38 , pp. 245-261
    • Moral, S.1    Salmerón, A.2
  • 29
    • 0001249662 scopus 로고    scopus 로고
    • AIS-BN: An adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks
    • J. Cheng, and M.J. Druzdzel AIS-BN: an adaptive importance sampling algorithm for evidential reasoning in large Bayesian networks Journal of Artificial Intelligence Research 13 2000 155 188
    • (2000) Journal of Artificial Intelligence Research , vol.13 , pp. 155-188
    • Cheng, J.1    Druzdzel, M.J.2
  • 33
    • 33748255514 scopus 로고    scopus 로고
    • Importance sampling algorithms for Bayesian networks: Principles and performance
    • C. Yuan, and M.J. Druzdzel Importance sampling algorithms for Bayesian networks: principles and performance Mathematical and Computer Modelling 43 2006 1189 1207
    • (2006) Mathematical and Computer Modelling , vol.43 , pp. 1189-1207
    • Yuan, C.1    Druzdzel, M.J.2
  • 35
    • 0011952756 scopus 로고    scopus 로고
    • Correctness of belief propagation in gaussian graphical models of arbitrary topology
    • Y. Weiss, and W.T. Freeman Correctness of belief propagation in gaussian graphical models of arbitrary topology Neural Computation 13 10 2001 2173 2200
    • (2001) Neural Computation , vol.13 , Issue.10 , pp. 2173-2200
    • Weiss, Y.1    Freeman, W.T.2
  • 43
    • 78649747322 scopus 로고    scopus 로고
    • Ph.D. Dissertation, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw, March 2003
    • A. Onisko, Probabilistic Causal Models in Medicine: Application to Diagnosis of Liver Disorders, Ph.D. Dissertation, Institute of Biocybernetics and Biomedical Engineering, Polish Academy of Science, Warsaw, March 2003.
    • Causal Models in Medicine: Application to Diagnosis of Liver Disorders
    • Onisko, A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.