메뉴 건너뛰기




Volumn , Issue , 2009, Pages 484-489

Artificial neural networks learning in ROC space

Author keywords

Backpropagation algorithm; Cost sensitive learning; Imbalanced data sets; Multi Layer Perceptron (MLP); ROC analysis

Indexed keywords

ARTIFICIAL NEURAL NETWORK; BATCH MODES; BINARY CLASSIFIERS; COST-SENSITIVE LEARNING; IMBALANCED DATA SETS; MEAN SQUARED ERROR; MISCLASSIFICATION COSTS; MLP CLASSIFIERS; MULTI LAYER PERCEPTRON; ROC ANALYSIS; SENSITIVITY AND SPECIFICITY; SVM ALGORITHM; UNBALANCED TRAINING SET;

EID: 77955452616     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (6)

References (20)
  • 3
    • 34249753618 scopus 로고
    • Support-vector networks
    • Cortes, C. and Vapnik, V. (1995). Support-vector networks. Mach. Learn., 20(3):273-297.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 273-297
    • Cortes, C.1    Vapnik, V.2
  • 6
    • 33646054819 scopus 로고    scopus 로고
    • Multi-class roc analysis from a multi-objective optimisation perspective
    • Everson, R. M. and Fieldsend, J. E. (2006). Multi-class roc analysis from a multi-objective optimisation perspective. Pattern Recogn. Lett., 27(8):918-927.
    • (2006) Pattern Recogn. Lett. , vol.27 , Issue.8 , pp. 918-927
    • Everson, R.M.1    Fieldsend, J.E.2
  • 11
    • 0033169217 scopus 로고    scopus 로고
    • Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characterisitic curves
    • Kupinski, M. A. and Anastasio, M. A. (1999). Multiobjective genetic optimization of diagnostic classifiers with implications for generating receiver operating characterisitic curves. IEEE Trans. Med. Imag., 18:675-685.
    • (1999) IEEE Trans. Med. Imag. , vol.18 , pp. 675-685
    • Kupinski, M.A.1    Anastasio, M.A.2
  • 12
    • 0035283313 scopus 로고    scopus 로고
    • Robust classification for imprecise environments
    • Provost, F. and Fawcett, T. (2001). Robust classification for imprecise environments. Mach. Learn., 42(3):203-231.
    • (2001) Mach. Learn. , vol.42 , Issue.3 , pp. 203-231
    • Provost, F.1    Fawcett, T.2
  • 15
    • 20444476242 scopus 로고    scopus 로고
    • On pareto-optimal fronts for deciding about sensitivity and specificity in class-modelling problems
    • Sanchez, M. S., Ortiz, M. C., Sarabia, L. A., and Lleti, R. (2005). On pareto-optimal fronts for deciding about sensitivity and specificity in class-modelling problems. Analytica Chimica Acta, 544(1-2):236-245.
    • (2005) Analytica Chimica Acta , vol.544 , Issue.1-2 , pp. 236-245
    • Sanchez, M.S.1    Ortiz, M.C.2    Sarabia, L.A.3    Lleti, R.4
  • 16
    • 34547673383 scopus 로고    scopus 로고
    • Cost-sensitive boosting for classification of imbalanced data
    • Sun, Y., Kamel, M. S., Wong, A. K. C., and Wang, Y. (2007). Cost-sensitive boosting for classification of imbalanced data. Pattern Recognition, 40(12):3358-3378.
    • (2007) Pattern Recognition , vol.40 , Issue.12 , pp. 3358-3378
    • Sun, Y.1    Kamel, M.S.2    Wong, A.K.C.3    Wang, Y.4
  • 18
    • 20844458491 scopus 로고    scopus 로고
    • Mining with rarity: A unifying framework
    • Weiss, G. M. (2004). Mining with rarity: a unifying framework. SIGKDD Explor. Newsl., 6(1):7-19.
    • (2004) SIGKDD Explor. Newsl. , vol.6 , Issue.1 , pp. 7-19
    • Weiss, G.M.1
  • 19
    • 20844441675 scopus 로고    scopus 로고
    • Kba: Kernel boundary alignment considering imbalanced data distribution
    • Wu, G. and Chang, E. Y. (2005). Kba: Kernel boundary alignment considering imbalanced data distribution. IEEE Trans. Knowl. Data Eng., 17(6):786-795.
    • (2005) IEEE Trans. Knowl. Data Eng. , vol.17 , Issue.6 , pp. 786-795
    • Wu, G.1    Chang, E.Y.2
  • 20
    • 31344442851 scopus 로고    scopus 로고
    • Training cost-sensitive neural networks with methods addressing the class imbalance problem
    • Zhou, Z.-H. and Liu, X.-Y. (2006). Training cost-sensitive neural networks with methods addressing the class imbalance problem. IEEE Trans. Knowl. Data Eng., 18(1):63-77.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 63-77
    • Zhou, Z.-H.1    Liu, X.-Y.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.