메뉴 건너뛰기




Volumn 32, Issue 1, 2010, Pages 59-73

Energy supervised relevance neural gas for feature ranking

Author keywords

Feature ranking; Learning Vector Quantization; Neural Gas; Pattern classification

Indexed keywords

CLASSIFICATION ACCURACY; CLASSIFICATION TASKS; FEATURE RANKING; INPUT FEATURES; INPUT PATTERNS; KERNEL METHODS; LEARNING VECTOR QUANTIZATION; NEURAL GAS; PATTERN CLASSIFICATION;

EID: 77955286812     PISSN: 13704621     EISSN: 1573773X     Source Type: Journal    
DOI: 10.1007/s11063-010-9143-z     Document Type: Article
Times cited : (5)

References (40)
  • 2
    • 33745943790 scopus 로고    scopus 로고
    • Feature ranking using supervised neural gas and informational energy
    • Montreal, Canada, July 31-August 4
    • Andonie R, Caţaron A (2005) Feature ranking using supervised neural gas and informational energy. In: Proceedings of International Joint Conference on Neural Networks (IJCNN2005), Montreal, Canada, July 31-August 4, pp 1269-1273
    • (2005) Proceedings of International Joint Conference on Neural Networks (IJCNN2005) , pp. 1269-1273
    • Andonie, R.C.1
  • 3
    • 10944262358 scopus 로고
    • Interacting systems and informational energy
    • 0621.94006 876585
    • R Andonie F Petrescu 1986 Interacting systems and informational energy Found Control Eng 11 53 59 0621.94006 876585
    • (1986) Found Control Eng , vol.11 , pp. 53-59
    • Andonie, R.1    Petrescu, F.2
  • 4
    • 36948999941 scopus 로고    scopus 로고
    • University of California, Irvine, School of Information and Computer Sciences
    • Asuncion A, Newman DJ (2007) UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences. Available: http://mlearn.ics.uci.edu/MLRepository.html, 2007
    • (2007) UCI Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2
  • 5
    • 0028468293 scopus 로고
    • Using mutual information for selecting features in supervised neural network training
    • 10.1109/72.298224
    • R. Battiti 1994 Using mutual information for selecting features in supervised neural network training IEEE Trans Neural Netw 5 537 550 10.1109/72.298224
    • (1994) IEEE Trans Neural Netw , vol.5 , pp. 537-550
    • Battiti, R.1
  • 7
    • 0003619255 scopus 로고    scopus 로고
    • Bias, variance and arcing classifiers
    • University of California, April 1996
    • Breiman L (1996) Bias, variance and arcing classifiers. Tec. Report 460, Statistics department, University of California, April 1996
    • (1996) Tec. Report 460, Statistics Department
    • Breiman, L.1
  • 10
    • 6344233728 scopus 로고    scopus 로고
    • Feature ranking and best subset using mutual information
    • 10.1007/s00521-004-0400-9
    • S Cang D Partridge 2004 Feature ranking and best subset using mutual information Neural Comput Appl 13 175 184 10.1007/s00521-004-0400-9
    • (2004) Neural Comput Appl , vol.13 , pp. 175-184
    • Cang, S.1    Partridge, D.2
  • 12
    • 33646260219 scopus 로고    scopus 로고
    • Informational energy kernel for LVQ
    • Dutch W et al (eds) Springer-Verlag, Berlin
    • Caţaron A, Andonie R (2005) Informational energy kernel for LVQ. In: Dutch W et al (eds) ICANN 2005, Lecture Notes in Computer Science, vol 3697. Springer-Verlag, Berlin, pp 601-606
    • (2005) ICANN 2005, Lecture Notes in Computer Science , vol.3697 , pp. 601-606
    • Caţaron, A.A.1
  • 13
    • 13844298045 scopus 로고    scopus 로고
    • Estimating optimal feature subsets using efficient estimation of high- dimensional mutual information
    • 10.1109/TNN.2004.841414
    • TWS Chow D Huang 2005 Estimating optimal feature subsets using efficient estimation of high- dimensional mutual information IEEE Trans Neural Netw 16 213 224 10.1109/TNN.2004.841414
    • (2005) IEEE Trans Neural Netw , vol.16 , pp. 213-224
    • Chow, T.W.S.1    Huang, D.2
  • 17
    • 0037983742 scopus 로고    scopus 로고
    • Data reduction dimensionality with application to simplifying RBF network structure and improving classification performance
    • X Fu L Wang 2003 Data reduction dimensionality with application to simplifying RBF network structure and improving classification performance IEEE Trans Syst Man Cybern B Cybern 3 399 409
    • (2003) IEEE Trans Syst Man Cybern B Cybern , vol.3 , pp. 399-409
    • Fu, X.1    Wang, L.2
  • 18
    • 0037813165 scopus 로고    scopus 로고
    • An accelerated procedure for recursive feature ranking on microarray data
    • 10.1016/S0893-6080(03)00103-5
    • C Furlanello M Serafini S Merler G Jurman 2003 An accelerated procedure for recursive feature ranking on microarray data Neural Netw 16 641 648 10.1016/S0893-6080(03)00103-5
    • (2003) Neural Netw , vol.16 , pp. 641-648
    • Furlanello, C.1    Serafini, M.2    Merler, S.3    Jurman, G.4
  • 20
    • 69249222802 scopus 로고    scopus 로고
    • Information-theoretic feature selection for functional data classification
    • 10.1016/j.neucom.2008.12.035
    • V Gómez-Verdejo M Verleysen J Fleury 2009 Information-theoretic feature selection for functional data classification Neurocomputing 72 3580 3589 10.1016/j.neucom.2008.12.035
    • (2009) Neurocomputing , vol.72 , pp. 3580-3589
    • Gómez-Verdejo, V.1    Verleysen, M.2    Fleury, J.3
  • 22
    • 33745561205 scopus 로고    scopus 로고
    • An introduction to variable and feature selection
    • 1102.68556 10.1162/153244303322753616
    • I Guyon A Elisseeff 2003 An introduction to variable and feature selection J Mach Learn Res 3 1157 1182 1102.68556 10.1162/153244303322753616
    • (2003) J Mach Learn Res , vol.3 , pp. 1157-1182
    • Guyon, I.1    Elisseeff, A.2
  • 23
    • 0036791938 scopus 로고    scopus 로고
    • Generalized relevance learning vector quantization
    • 10.1016/S0893-6080(02)00079-5
    • B Hammer T Villmann 2002 Generalized relevance learning vector quantization Neural Netw 15 1059 1068 10.1016/S0893-6080(02)00079-5
    • (2002) Neural Netw , vol.15 , pp. 1059-1068
    • Hammer, B.1    Villmann, T.2
  • 24
    • 12844250052 scopus 로고    scopus 로고
    • Supervised neural gas with general similarity measure
    • 10.1007/s11063-004-3255-2
    • B Hammer M Strickert T Villmann 2005 Supervised neural gas with general similarity measure Neural Process Lett 21 1 21 44 10.1007/s11063-004-3255-2
    • (2005) Neural Process Lett , vol.21 , Issue.1 , pp. 21-44
    • Hammer, B.1    Strickert, M.2    Villmann, T.3
  • 27
    • 14844296969 scopus 로고    scopus 로고
    • Vector quantization using information theoretic concepts
    • 10.1007/s11047-004-9619-8
    • T Lehn-Schiøler A Hegde D Erdogmus JC Principe 2005 Vector quantization using information theoretic concepts Nat Comput Int J 4 39 51 10.1007/s11047-004-9619-8
    • (2005) Nat Comput Int J , vol.4 , pp. 39-51
    • Lehn-Schiøler, T.1    Hegde, A.2    Erdogmus, D.3    Principe, J.C.4
  • 28
    • 39149116851 scopus 로고    scopus 로고
    • H. Liu H. Motoda (eds). Chapman & Hall/CRC Boca Raton
    • Liu, H, Motoda, H (eds) (2008) Computational methods of feature selection. Chapman & Hall/CRC, Boca Raton
    • (2008) Computational Methods of Feature Selection
  • 29
    • 0027632248 scopus 로고
    • Neural-gas network for vector quantization and its application to time-series prediction
    • 10.1109/72.238311
    • TM Martinetz SG Berkovich SG Schulten 1993 Neural-gas network for vector quantization and its application to time-series prediction IEEE Trans Neural Netw 4 558 569 10.1109/72.238311
    • (1993) IEEE Trans Neural Netw , vol.4 , pp. 558-569
    • Martinetz, T.M.1    Berkovich, S.G.2    Schulten, S.G.3
  • 30
    • 0041371907 scopus 로고
    • Theorie de l'information. Energie informationelle
    • 0143.41206 229478
    • O Onicescu 1966 Theorie de l'information. Energie informationelle C R Acad Sci Paris Ser A-B 263 841 842 0143.41206 229478
    • (1966) C R Acad Sci Paris ser A-B , vol.263 , pp. 841-842
    • Onicescu, O.1
  • 32
    • 77955291754 scopus 로고
    • Considerations on the definition of a good measure of unilateral dependence
    • 0638.60025 902143
    • I Purcaru 1987 Considerations on the definition of a good measure of unilateral dependence Stud Cerc Mat 39 56 59 0638.60025 902143
    • (1987) Stud Cerc Mat , vol.39 , pp. 56-59
    • Purcaru, I.1
  • 34
    • 34247622378 scopus 로고    scopus 로고
    • Iterative RELIEF for feature weighting: Algorithms, theories, and applications
    • 10.1109/TPAMI.2007.1093
    • Y Sun 2007 Iterative RELIEF for feature weighting: algorithms, theories, and applications IEEE Trans Pattern Anal Mach Intell 29 1035 1051 10.1109/TPAMI.2007.1093
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.29 , pp. 1035-1051
    • Sun, Y.1
  • 37
    • 1942450610 scopus 로고    scopus 로고
    • Feature extraction by non parametric mutual information maximization
    • 1102.68638 10.1162/153244303322753742 2020765
    • K Torkkola 2003 Feature extraction by non parametric mutual information maximization J Mach Learn Res 3 1415 1438 1102.68638 10.1162/153244303322753742 2020765
    • (2003) J Mach Learn Res , vol.3 , pp. 1415-1438
    • Torkkola, K.1
  • 38
    • 0021441581 scopus 로고
    • A generalized class of certainty and information measures
    • 0553.94005 10.1016/0020-0255(84)90034-3
    • JCA van der Lubbe Y Boxma DE Bockee 1984 A generalized class of certainty and information measures Inf Sci 32 187 215 0553.94005 10.1016/0020-0255(84) 90034-3
    • (1984) Inf Sci , vol.32 , pp. 187-215
    • Van Der Lubbe, J.C.A.1    Boxma, Y.2    Bockee, D.E.3
  • 40
    • 33947220823 scopus 로고    scopus 로고
    • Feature subset selection and ranking for data dimensionality reduction
    • 10.1109/TPAMI.2007.250607
    • HL Wei SA Billings 2007 Feature subset selection and ranking for data dimensionality reduction IEEE Trans Pattern Anal Mach Intell 29 162 166 10.1109/TPAMI.2007.250607
    • (2007) IEEE Trans Pattern Anal Mach Intell , vol.29 , pp. 162-166
    • Wei, H.L.1    Billings, S.A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.