메뉴 건너뛰기




Volumn 11, Issue , 2010, Pages

Comparison study of microarray meta-analysis methods

Author keywords

[No Author keywords available]

Indexed keywords

COMPARISON STUDY; META-ANALYSIS; MICROARRAY DATA SETS; PREDICTION ACCURACY; ROC CURVES;

EID: 77955104946     PISSN: None     EISSN: 14712105     Source Type: Journal    
DOI: 10.1186/1471-2105-11-408     Document Type: Article
Times cited : (75)

References (36)
  • 1
    • 0033557255 scopus 로고    scopus 로고
    • Meta-analysis: formulating, evaluating, combining, and reporting
    • 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P, 10070677
    • Normand SL. Meta-analysis: formulating, evaluating, combining, and reporting. Statistics in Medicine 1999, 18:321-359. 10.1002/(SICI)1097-0258(19990215)18:3<321::AID-SIM28>3.0.CO;2-P, 10070677.
    • (1999) Statistics in Medicine , vol.18 , pp. 321-359
    • Normand, S.L.1
  • 2
    • 4944232237 scopus 로고    scopus 로고
    • Combining multiple microarray studies and modeling interstudy variation
    • Choi JK, Yu U, Kim S, Yoo OJ. Combining multiple microarray studies and modeling interstudy variation. Bioinformatics 2003, 19(Suppl 1):84-90.
    • (2003) Bioinformatics , vol.19 , Issue.SUPPL 1 , pp. 84-90
    • Choi, J.K.1    Yu, U.2    Kim, S.3    Yoo, O.J.4
  • 3
    • 38849106351 scopus 로고    scopus 로고
    • A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments
    • 10.1093/bioinformatics/btm620, 18204063
    • Hong F, Breitling R. A comparison of meta-analysis methods for detecting differentially expressed genes in microarray experiments. Bioinformatics 2008, 24:374-382. 10.1093/bioinformatics/btm620, 18204063.
    • (2008) Bioinformatics , vol.24 , pp. 374-382
    • Hong, F.1    Breitling, R.2
  • 5
    • 53149135477 scopus 로고    scopus 로고
    • Key issues in conducting a meta-analysis of gene expression microarray datasets
    • 10.1371/journal.pmed.0050184, 2528050,2528050, 18767902
    • Ramasamy A, Mondry A, Holmes CC, Altman DG. Key issues in conducting a meta-analysis of gene expression microarray datasets. PLoS Medicine 2008, 5:e184. 10.1371/journal.pmed.0050184, 2528050,2528050, 18767902.
    • (2008) PLoS Medicine , vol.5
    • Ramasamy, A.1    Mondry, A.2    Holmes, C.C.3    Altman, D.G.4
  • 8
    • 0036682376 scopus 로고    scopus 로고
    • Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer
    • Rhodes DR, Barrette TR, Rubin MA, Ghosh D, Chinnaiyan AM. Meta-analysis of microarrays: interstudy validation of gene expression profiles reveals pathway dysregulation in prostate cancer. Cancer Research 2002, 62:4427-4433.
    • (2002) Cancer Research , vol.62 , pp. 4427-4433
    • Rhodes, D.R.1    Barrette, T.R.2    Rubin, M.A.3    Ghosh, D.4    Chinnaiyan, A.M.5
  • 11
    • 34548499539 scopus 로고    scopus 로고
    • Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization
    • 10.1016/j.gene.2007.06.016, 2111172, 17651921
    • Cahan P, Rovegno F, Mooney D, Newman JC, St Laurent G, McCaffrey TA. Meta-analysis of microarray results: challenges, opportunities, and recommendations for standardization. Gene 2007, 401:12-18. 10.1016/j.gene.2007.06.016, 2111172, 17651921.
    • (2007) Gene , vol.401 , pp. 12-18
    • Cahan, P.1    Rovegno, F.2    Mooney, D.3    Newman, J.C.4    St Laurent, G.5    McCaffrey, T.A.6
  • 12
    • 66049144026 scopus 로고    scopus 로고
    • Meta analysis of gene expression data within and across species
    • 10.2174/138920208786847935, 2694560, 19516959
    • Fierro AC, Vandenbussche F, Engelen K, Van de Peer Y, Marchal K. Meta analysis of gene expression data within and across species. Current Genomics 2008, 9:525-534. 10.2174/138920208786847935, 2694560, 19516959.
    • (2008) Current Genomics , vol.9 , pp. 525-534
    • Fierro, A.C.1    Vandenbussche, F.2    Engelen, K.3    Van de Peer, Y.4    Marchal, K.5
  • 13
    • 16344371755 scopus 로고    scopus 로고
    • Identifying differentially expressed genes from microarray experiments via statistic synthesis
    • 10.1093/bioinformatics/bti108, 15513985
    • Yang YH, Xiao Y, Segal MR. Identifying differentially expressed genes from microarray experiments via statistic synthesis. Bioinformatics 2005, 21:1084-1093. 10.1093/bioinformatics/bti108, 15513985.
    • (2005) Bioinformatics , vol.21 , pp. 1084-1093
    • Yang, Y.H.1    Xiao, Y.2    Segal, M.R.3
  • 14
    • 70449566249 scopus 로고    scopus 로고
    • Limma: Linear Models for Mi- croarray Data User's Guide
    • Smyth TNP GK, Wettenhall J. Limma: Linear Models for Mi- croarray Data User's Guide. Software manual 2003, , http://www.bioconductor.org
    • (2003) Software manual
    • Smyth TNP, G.K.1    Wettenhall, J.2
  • 20
    • 2442545413 scopus 로고    scopus 로고
    • A cross-study comparison of gene expression studies for the molecular classification of lung cancer
    • 10.1158/1078-0432.CCR-03-0490, 15131026
    • Parmigiani G, Garrett-Mayer ES, Anbazhagan R, Gabrielson E. A cross-study comparison of gene expression studies for the molecular classification of lung cancer. Clinical Cancer Research 2004, 10:2922-2927. 10.1158/1078-0432.CCR-03-0490, 15131026.
    • (2004) Clinical Cancer Research , vol.10 , pp. 2922-2927
    • Parmigiani, G.1    Garrett-Mayer, E.S.2    Anbazhagan, R.3    Gabrielson, E.4
  • 21
    • 4344571581 scopus 로고    scopus 로고
    • Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments
    • 10.1016/j.febslet.2004.07.055, 15327980
    • Breitling R, Armengaud P, Amtmann A, Herzyk P. Rank products: a simple, yet powerful, new method to detect differentially regulated genes in replicated microarray experiments. FEBS Letters 2004, 573:83-92. 10.1016/j.febslet.2004.07.055, 15327980.
    • (2004) FEBS Letters , vol.573 , pp. 83-92
    • Breitling, R.1    Armengaud, P.2    Amtmann, A.3    Herzyk, P.4
  • 22
    • 27844594381 scopus 로고    scopus 로고
    • Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes
    • 10.1186/1471-2105-6-265, 1312314, 16271137
    • Warnat P, Eils R, Brors B. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes. BMC Bioinformatics 2005, 6:265. 10.1186/1471-2105-6-265, 1312314, 16271137.
    • (2005) BMC Bioinformatics , vol.6 , pp. 265
    • Warnat, P.1    Eils, R.2    Brors, B.3
  • 23
    • 77949525881 scopus 로고    scopus 로고
    • Biomarker detection in the integration of multiple multi-class genomic studies
    • 10.1093/bioinformatics/btp669, 19965884
    • Lu S, Li J, Song C, Shen K, Tseng GC. Biomarker detection in the integration of multiple multi-class genomic studies. Bioinformatics 2010, 26:333-340. 10.1093/bioinformatics/btp669, 19965884.
    • (2010) Bioinformatics , vol.26 , pp. 333-340
    • Lu, S.1    Li, J.2    Song, C.3    Shen, K.4    Tseng, G.C.5
  • 24
    • 0022992740 scopus 로고
    • Meta-analysis in clinical trials
    • 10.1016/0197-2456(86)90046-2, 3802833
    • DerSimonian R, Laird N. Meta-analysis in clinical trials. Controlled Clinical Trials 1986, 7(3):177-188. 10.1016/0197-2456(86)90046-2, 3802833.
    • (1986) Controlled Clinical Trials , vol.7 , Issue.3 , pp. 177-188
    • DerSimonian, R.1    Laird, N.2
  • 28
    • 34248183381 scopus 로고    scopus 로고
    • Cross platform microarray analysis for robust identification of differentially expressed genes
    • 10.1186/1471-2105-8-S1-S5, 1885857, 17430572
    • Bosotti R, Locatelli G, Healy S, Scacheri E, Sartori L, Mercurio C, Calogero R, Isacchi A. Cross platform microarray analysis for robust identification of differentially expressed genes. BMC Bioinformatics 2007, 8(Suppl 1):S5. 10.1186/1471-2105-8-S1-S5, 1885857, 17430572.
    • (2007) BMC Bioinformatics , vol.8 , Issue.SUPPL 1
    • Bosotti, R.1    Locatelli, G.2    Healy, S.3    Scacheri, E.4    Sartori, L.5    Mercurio, C.6    Calogero, R.7    Isacchi, A.8
  • 33
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed TP. Comparison of discrimination methods for the classification of tumors using gene expression data. Journal of the American Statistical Association 2002, 97(457):77-87.
    • (2002) Journal of the American Statistical Association , vol.97 , Issue.457 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.P.3
  • 34
    • 18844389948 scopus 로고    scopus 로고
    • Meta-analysis combines affymetrix microarray results across laboratories
    • 10.1002/cfg.460, 2447518, 18629222
    • Steven J, Doerge R. Meta-analysis combines affymetrix microarray results across laboratories. Comparative and Functional Genomics 2005, 6:116-122. 10.1002/cfg.460, 2447518, 18629222.
    • (2005) Comparative and Functional Genomics , vol.6 , pp. 116-122
    • Steven, J.1    Doerge, R.2
  • 36
    • 33845432928 scopus 로고    scopus 로고
    • Adjusting batch effects in microarray expression data using empirical Bayes methods
    • 10.1093/biostatistics/kxj037, 16632515
    • Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics 2007, 8:118-127. 10.1093/biostatistics/kxj037, 16632515.
    • (2007) Biostatistics , vol.8 , pp. 118-127
    • Johnson, W.E.1    Li, C.2    Rabinovic, A.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.