메뉴 건너뛰기




Volumn 29, Issue 2, 2010, Pages 79-88

Credit scoring using an Ant mining approach

Author keywords

ant colony systems; classification; Credit scoring; feature selection; rule extraction

Indexed keywords

ACCURATE PREDICTION; ANT COLONY SYSTEMS; ARTIFICIAL ANT; CLASSIFICATION METHODS; CLASSIFICATION RULES; CREDIT RISK ASSESSMENT; CREDIT SCORING; DATA SETS; DIMENSIONALITY REDUCTION; FEATURE SELECTION; FINANCIAL INSTITUTION; NATURE INSPIRED ALGORITHMS; OPTIMAL SOLUTIONS; RULE EXTRACTION;

EID: 77954744357     PISSN: 01672533     EISSN: None     Source Type: Journal    
DOI: 10.3233/HSM-2010-0715     Document Type: Article
Times cited : (3)

References (41)
  • 1
    • 67349195042 scopus 로고    scopus 로고
    • Genetic programming for credit scoring: The case of Egyptian public sector banks
    • H. Abdou, Genetic programming for credit scoring: The case of Egyptian public sector banks, Expert Systems with Applications 36(9) (2009), 11402-11417.
    • (2009) Expert Systems with Applications , vol.36 , Issue.9 , pp. 11402-11417
    • Abdou, H.1
  • 2
    • 70449371605 scopus 로고    scopus 로고
    • Assessing Naïve Bayes as a method for screening credit applicants
    • A.C. Antonakis and M.E. Sfakianakis, Assessing Naïve Bayes as a method for screening credit applicants, Journal of Applied Statistics, 36(5) (2009), 537-545.
    • (2009) Journal of Applied Statistics , vol.36 , Issue.5 , pp. 537-545
    • Antonakis, A.C.1    Sfakianakis, M.E.2
  • 3
    • 0031521799 scopus 로고    scopus 로고
    • Analyzing credit risk data: A comparison of logistic discrimination classification tree analysis and feedforward networks
    • G. Arminger, D. Enache and T. Bonne, Analyzing credit risk data: A comparison of logistic discrimination classification tree analysis and feedforward networks, Computational Statistics 12 (1997), 293-310.
    • (1997) Computational Statistics , vol.12 , pp. 293-310
    • Arminger, G.1    Enache, D.2    Bonne, T.3
  • 4
    • 36948999941 scopus 로고    scopus 로고
    • University of California, School of Information and Computer Science, Irvine, CA
    • A. Asuncion, D.J. Newman and D.Juci, Machine Learning Repository [http://www.ics.uci.edu/?mlearn/MLRepository. html], University of California, School of Information and Computer Science, Irvine, CA, 2007.
    • (2007) Machine Learning Repository
    • Asuncion, A.1    Newman, D.J.2    Juci, D.3
  • 7
    • 56349130760 scopus 로고    scopus 로고
    • Support vector machines for credit scoring and discovery of significant features
    • T. Bellotti and J. Crook, Support vector machines for credit scoring and discovery of significant features, Expert Systems with Applications 36(2) (2009), 3302-3308.
    • (2009) Expert Systems with Applications , vol.36 , Issue.2 , pp. 3302-3308
    • Bellotti, T.1    Crook, J.2
  • 8
    • 0005294255 scopus 로고
    • Scoring puts up higher numbers
    • M. Borowsky, Scoring puts up higher numbers, US Banker 105(1) (1995), 44-46.
    • (1995) US Banker , vol.105 , Issue.1 , pp. 44-46
    • Borowsky, M.1
  • 10
    • 30944442440 scopus 로고    scopus 로고
    • A paper of Taiwan's issuer credit rating systems using support vector machines
    • W.H. Chen and J.Y. Shih, A paper of Taiwan's issuer credit rating systems using support vector machines, Expert Systems with Applications 30(3) (2006), 427-435.
    • (2006) Expert Systems with Applications , vol.30 , Issue.3 , pp. 427-435
    • Chen, W.H.1    Shih, J.Y.2
  • 11
  • 13
    • 77954697793 scopus 로고    scopus 로고
    • Can ants predict bankruptcy? A comparison of Ant Colony Systems to other state-of-the-art computational methods
    • Y. Goletsis, T.P. Exarchos and C.D. Katsis, Can ants predict bankruptcy? A comparison of Ant Colony Systems to other state-of-the-art computational methods, New Mathematics and Natural Computation 5(3) (2009), 571-588.
    • (2009) New Mathematics and Natural Computation , vol.5 , Issue.3 , pp. 571-588
    • Goletsis, Y.1    Exarchos, T.P.2    Katsis, C.D.3
  • 15
    • 0242410408 scopus 로고    scopus 로고
    • Benchmarking attribute selection techniques for discrete class data mining
    • M.A. Hall and G. Holmes, Benchmarking attribute selection techniques for discrete class data mining, IEEE Transactions in Knowledge and Data Engineering 15 (2003), 1437-1447.
    • (2003) IEEE Transactions in Knowledge and Data Engineering , vol.15 , pp. 1437-1447
    • Hall, M.A.1    Holmes, G.2
  • 16
    • 33745780918 scopus 로고    scopus 로고
    • A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data
    • N. Holden and A.A. Freitas, A hybrid particle swarm/ant colony algorithm for the classification of hierarchical biological data, in: Proc IEEE Swarm Intelligence Symposium SIS'05 (2005), 100-107.
    • (2005) Proc IEEE Swarm Intelligence Symposium SIS'05 , pp. 100-107
    • Holden, N.1    Freitas, A.A.2
  • 17
    • 2442665617 scopus 로고    scopus 로고
    • Credit rating analysis with support vector machines and neural networks: Amarket comparative paper
    • Z. Huang, H.C. Chen, C.J. Hsu,W.H. Chen and S.S.Wu, Credit rating analysis with support vector machines and neural networks: Amarket comparative paper, Decision Support Systems 37 (2004), 543-558.
    • (2004) Decision Support Systems , vol.37 , pp. 543-558
    • Huang, Z.1    Chen, H.C.2    Hsu, C.J.3    Chen, W.H.4    Wu, S.S.5
  • 18
    • 34047126555 scopus 로고    scopus 로고
    • Credit scoring with a data mining approach based on support vector machines
    • C. Huang, M. Chen and C. Wang, Credit scoring with a data mining approach based on support vector machines, Expert Systems with Applications 33(4) (2007), 847-856.
    • (2007) Expert Systems with Applications , vol.33 , Issue.4 , pp. 847-856
    • Huang, C.1    Chen, M.2    Wang, C.3
  • 19
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • H.L. Jensen, Using neural networks for credit scoring, Managerial Finance 18 (1992), 15-26.
    • (1992) Managerial Finance , vol.18 , pp. 15-26
    • Jensen, H.L.1
  • 20
    • 0031381525 scopus 로고    scopus 로고
    • Wrappers for feature subset selection
    • R. Kohavi and G.H. John, Wrappers for feature subset selection, Artificial Intelligence 97 (1997), 273-324.
    • (1997) Artificial Intelligence , vol.97 , pp. 273-324
    • Kohavi, R.1    John, G.H.2
  • 22
    • 17844382437 scopus 로고    scopus 로고
    • Atwo stage hybrid credit scoring model using artificial neural networks and multivariate regression splines
    • T.S. Lee and I.F. Chen,Atwo stage hybrid credit scoring model using artificial neural networks and multivariate regression splines, Expert System with Applications 28 (2005), 743-752.
    • (2005) Expert System with Applications , vol.28 , pp. 743-752
    • Lee, T.S.1    Chen, I.F.2
  • 27
    • 33747046971 scopus 로고    scopus 로고
    • CCAS: An intelligent decision support system for credit card assessment
    • N.F. Matsatsinis, CCAS: An intelligent decision support system for credit card assessment, Journal of Multi-Criteria Decision Analysis 11(4-5) (2002), 213-235.
    • (2002) Journal of Multi-Criteria Decision Analysis , vol.11 , Issue.4-5 , pp. 213-235
    • Matsatsinis, N.F.1
  • 29
    • 26844481029 scopus 로고    scopus 로고
    • An Ant Colony based system for data mining: Applications to medical data
    • L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon and E. Burke, eds, Morgan Kaufmann, San Francisco, California, USA
    • R.S. Parpinelli, H.S. Lopes and A.A. Freitas, An Ant Colony based system for data mining: Applications to medical data, in: L. Spector, E.D. Goodman, A. Wu, W.B. Langdon, H.-M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M.H. Garzon and E. Burke, eds, Proceedings of the Genetic and Evolutionary Computation Conference ({GECCO} - 2001), Morgan Kaufmann, San Francisco, California, USA, 2001, 791-797.
    • (2001) Proceedings of the Genetic and Evolutionary Computation Conference ({GECCO} - 2001) , pp. 791-797
    • Parpinelli, R.S.1    Lopes, H.S.2    Freitas, A.A.3
  • 31
    • 0032749972 scopus 로고    scopus 로고
    • Financial credit-risk evaluation with neural and neurofuzzy systems
    • S. Piramuthu, Financial credit-risk evaluation with neural and neurofuzzy systems, European Journal of Operational Research 112 (1999), 310-321.
    • (1999) European Journal of Operational Research , vol.112 , pp. 310-321
    • Piramuthu, S.1
  • 34
    • 0002975427 scopus 로고    scopus 로고
    • Methodologies for classifying applicants for credit
    • D.J. Hand, ed., Arnold, London
    • L.C. Thomas, Methodologies for classifying applicants for credit, in: D.J. Hand, ed., Statistics in Finance, Arnold, London, 1998.
    • (1998) Statistics in Finance
    • Thomas, L.C.1
  • 36
    • 77954721294 scopus 로고    scopus 로고
    • Credit rating by hybrid machine learning techniques
    • C. Tsai and M. Chen, Credit rating by hybrid machine learning techniques, Applied Soft Computing, 2009.
    • (2009) Applied Soft Computing
    • Tsai, C.1    Chen, M.2
  • 39
    • 0034118581 scopus 로고    scopus 로고
    • Neural network credit scoring models
    • D. West, Neural network credit scoring models, Computers and Operations Research 27 (2000), 1131-1152.
    • (2000) Computers and Operations Research , vol.27 , pp. 1131-1152
    • West, D.1
  • 41
    • 77954713907 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemle learning for credit risk evaluation
    • L. Yu,W. Yue, S.Wang and K.K. Lai, Support vector machine based multiagent ensemle learning for credit risk evaluation, Expert Systems with Applications, 2009.
    • (2009) Expert Systems with Applications
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.K.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.