메뉴 건너뛰기




Volumn , Issue , 2010, Pages 1-12

Spectral methods for matrices and tensors

Author keywords

algorithms; matrix; randomized; tensors

Indexed keywords

CONSTRAINT OPTIMIZATION PROBLEMS; DISCRETE OPTIMIZATION PROBLEMS; LOW RANK APPROXIMATIONS; MATRIX; NUMERICAL PROBLEMS; ON THE FLIES; RANDOMIZED; SALIENT FEATURES; SINGULAR VALUES; SPECTRAL METHODS; SUBMATRIX; TENSOR APPROXIMATION;

EID: 77954708484     PISSN: 07378017     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1806689.1806691     Document Type: Conference Paper
Times cited : (8)

References (63)
  • 2
    • 0036335176 scopus 로고    scopus 로고
    • Property testers for dense constraint satisfaction programs on finite domains
    • G. Andersson and L. Engebretsen, Property testers for dense constraint satisfaction programs on finite domains, Random Structures Algorithms 21 (2002), 14Ucombining double acute accent32.
    • (2002) Random Structures Algorithms , vol.21 , pp. 14-32
    • Andersson, G.1    Engebretsen, L.2
  • 4
    • 0001861551 scopus 로고
    • Polynomial time approximation schemes for dense instances of np-hard problems
    • S. Arora, D. Karger, and M. Karpinski, Polynomial time approximation schemes for dense instances of np-hard problems, 27th STOC (1995), 284-293.
    • (1995) 27th STOC , pp. 284-293
    • Arora, S.1    Karger, D.2    Karpinski, M.3
  • 7
    • 34247228045 scopus 로고    scopus 로고
    • Fast computation of low-rank matrix approximations
    • D. Achlioptas and F. McSherry, -, Fast computation of low-rank matrix approximations, J. ACM 54 (2007), no. 2.
    • (2007) J. ACM , vol.54 , Issue.2
    • Achlioptas, D.1    McSherry, F.2
  • 8
    • 33747188137 scopus 로고    scopus 로고
    • Approximating the cut-norm via grothendieck's inequality
    • N. Alon and A. Naor, Approximating the cut-norm via grothendieck's inequality, SIAM J. Comput. 35(4) (2006), 787-803.
    • (2006) SIAM J. Comput. , vol.35 , Issue.4 , pp. 787-803
    • Alon, N.1    Naor, A.2
  • 12
    • 70350626729 scopus 로고    scopus 로고
    • Robust pca and clustering on noisy mixtures
    • S. C. Brubaker, Robust pca and clustering on noisy mixtures, Proc. of SODA, 2009.
    • Proc. of SODA, 2009
    • Brubaker, S.C.1
  • 14
    • 57949105623 scopus 로고    scopus 로고
    • Isotropic pca and affine-invariant clustering
    • (M. Grötschel and G. Katona, eds.), Bolyai Society Mathematical Studies
    • S. C. Brubaker and S. Vempala, Isotropic pca and affine-invariant clustering, Building Bridges Between Mathematics and Computer Science (M. Grötschel and G. Katona, eds.), Bolyai Society Mathematical Studies, vol. 19, 2008.
    • (2008) Building Bridges between Mathematics and Computer Science , vol.19
    • Brubaker, S.C.1    Vempala, S.2
  • 16
    • 0038784650 scopus 로고    scopus 로고
    • Sampling lower bounds via information theory
    • Z. Bar-Yossef, Sampling lower bounds via information theory, Proc. of STOC, 2003, pp. 335-344.
    • Proc. of STOC, 2003 , pp. 335-344
    • Bar-Yossef, Z.1
  • 21
    • 0035186125 scopus 로고    scopus 로고
    • Fast monte-carlo algorithms for approximate matrix multiplication
    • P. Drineas and R. Kannan, Fast monte-carlo algorithms for approximate matrix multiplication, FOCS, 2001, pp. 452-459.
    • (2001) FOCS , pp. 452-459
    • Drineas, P.1    Kannan, R.2
  • 22
    • 0038416092 scopus 로고    scopus 로고
    • Pass efficient algorithms for approximating large matrices
    • P. Drineas and R. Kannan, -, Pass efficient algorithms for approximating large matrices, SODA '03, 2003, pp. 223-232.
    • (2003) SODA '03 , pp. 223-232
    • Drineas, P.1    Kannan, R.2
  • 23
    • 33751115359 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices i: Approximating matrix multiplication
    • P. Drineas, R. Kannan, and M. Mahoney, Fast monte carlo algorithms for matrices i: Approximating matrix multiplication, SIAM J. on Computing 36 (2006), 132-157.
    • (2006) SIAM J. on Computing , vol.36 , pp. 132-157
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3
  • 24
    • 33751075906 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix
    • P. Drineas, R. Kannan, and M. Mahoney, -, Fast monte carlo algorithms for matrices ii: Computing a low-rank approximation to a matrix, SIAM J. on Computing 36 (2006), 158-183.
    • (2006) SIAM J. on Computing , vol.36 , pp. 158-183
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3
  • 25
    • 33751097630 scopus 로고    scopus 로고
    • Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition
    • P. Drineas, R. Kannan, and M. Mahoney, -, Fast monte carlo algorithms for matrices iii: Computing a compressed approximate matrix decomposition, SIAM J. on Computing 36 (2006), 184-206.
    • (2006) SIAM J. on Computing , vol.36 , pp. 184-206
    • Drineas, P.1    Kannan, R.2    Mahoney, M.3
  • 27
    • 0030136319 scopus 로고    scopus 로고
    • MAX-CUT has a Randomized Approximation Scheme in Dense Graphs
    • W. Fernandez de-la Vega, MAX-CUT has a Randomized Approximation Scheme in Dense Graphs, Random Structures and Algorithms 8 (1996), 187-199.
    • (1996) Random Structures and Algorithms , vol.8 , pp. 187-199
    • Fernandez De-La Vega, W.1
  • 29
    • 34848897849 scopus 로고    scopus 로고
    • Tensor decomposition and approximation schemes for constraint satisfaction problems
    • W. Fernandez de la Vega, M. Karpinski, R. Kannan, and S. Vempala, Tensor decomposition and approximation schemes for constraint satisfaction problems, STOC '05, 2005, pp. 747-754.
    • (2005) STOC '05 , pp. 747-754
    • Fernandez De La Vega, W.1    Karpinski, M.2    Kannan, R.3    Vempala, S.4
  • 30
    • 33750079844 scopus 로고    scopus 로고
    • Subspace sampling and relative error matrix approximation: Column-based methods
    • P. Drineas, M. W. Mahoney, and S. Muthukrishnan, Subspace sampling and relative error matrix approximation: column-based methods, Proc. of APPROX-RANDOM, 2006, pp. 316-326.
    • Proc. of APPROX-RANDOM, 2006 , pp. 316-326
    • Drineas, P.1    Mahoney, M.W.2    Muthukrishnan, S.3
  • 31
    • 45849092005 scopus 로고    scopus 로고
    • Matrix approximation and projective clustering via volume sampling
    • A. Deshpande, L. Rademacher, S. Vempala, and G. Wang, Matrix approximation and projective clustering via volume sampling, Theory of Computing 2 (2006), no. 1, 225-247.
    • (2006) Theory of Computing , vol.2 , Issue.1 , pp. 225-247
    • Deshpande, A.1    Rademacher, L.2    Vempala, S.3    Wang, G.4
  • 32
    • 33750065382 scopus 로고    scopus 로고
    • Adaptive sampling and fast low-rank matrix approximation
    • A. Deshpande and S. Vempala, Adaptive sampling and fast low-rank matrix approximation, APPROX-RANDOM, 2006, pp. 292-303.
    • (2006) APPROX-RANDOM , pp. 292-303
    • Deshpande, A.1    Vempala, S.2
  • 33
    • 0000827674 scopus 로고
    • A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
    • M. Fiedler, A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czech. Math. J. 25 (1975), 619-637.
    • (1975) Czech. Math. J. , vol.25 , pp. 619-637
    • Fiedler, M.1
  • 34
    • 51249182622 scopus 로고
    • The eigenvalues of random symmetric matrices
    • Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), no. 3, 233-241.
    • (1981) Combinatorica , vol.1 , Issue.3 , pp. 233-241
    • Füredi, Z.1    Komlós, J.2
  • 35
    • 0040942625 scopus 로고    scopus 로고
    • Quick approximation to matrices and applications
    • A. Frieze and R. Kannan, Quick approximation to matrices and applications, Combinatorica 19 (1999), no. 2, 175-200.
    • (1999) Combinatorica , vol.19 , Issue.2 , pp. 175-200
    • Frieze, A.1    Kannan, R.2
  • 37
    • 0003773292 scopus 로고    scopus 로고
    • A simple algorithm for constructing szemerédi's regularity partition
    • A simple algorithm for constructing szemerédi's regularity partition, Electronic journal of combinatorics 6 (1999).
    • (1999) Electronic Journal of Combinatorics , vol.6
  • 38
    • 0032308232 scopus 로고    scopus 로고
    • Fast monte-carlo algorithms for finding low-rank approximations
    • A. Frieze, R. Kannan, and S. Vempala, Fast monte-carlo algorithms for finding low-rank approximations, Proc. of FOCS, 1998, pp. 370-378.
    • Proc. of FOCS, 1998 , pp. 370-378
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 39
    • 20444476106 scopus 로고    scopus 로고
    • Fast monte-carlo algorithms for finding low-rank approximations
    • A. Frieze, R. Kannan, and S. Vempala, Fast monte-carlo algorithms for finding low-rank approximations, J. ACM 51 (2004), no. 6, 1025-1041.
    • (2004) J. ACM , vol.51 , Issue.6 , pp. 1025-1041
    • Frieze, A.1    Kannan, R.2    Vempala, S.3
  • 40
    • 0032108275 scopus 로고    scopus 로고
    • Property testing and its connection to learning and approximation
    • O. Goldreich, S. Goldwasser, and D. Ron, Property testing and its connection to learning and approximation, Journal of the ACM 5 (1998), no. 4, 653-750.
    • (1998) Journal of the ACM , vol.5 , Issue.4 , pp. 653-750
    • Goldreich, O.1    Goldwasser, S.2    Ron, D.3
  • 41
    • 43449086031 scopus 로고    scopus 로고
    • The primes contain arbitrarily long arithmetic progressions
    • B. Green and T. Tao, The primes contain arbitrarily long arithmetic progressions, Annals of Mathematics 167 (2008), 481Ucombining double acute accent547.
    • (2008) Annals of Mathematics , vol.167 , pp. 481-547
    • Green, B.1    Tao, T.2
  • 42
    • 0001424792 scopus 로고
    • Tensor rank is np-complete
    • J. Hastad, Tensor rank is np-complete, J. Algorithms 11 (1990), 644-654.
    • (1990) J. Algorithms , vol.11 , pp. 644-654
    • Hastad, J.1
  • 45
    • 4243148480 scopus 로고    scopus 로고
    • Authoritative sources in a hyperlinked environment
    • J. Kleinberg, Authoritative sources in a hyperlinked environment, Journal of the ACM 46 (1999).
    • (1999) Journal of the ACM , vol.46
    • Kleinberg, J.1
  • 46
    • 57349189359 scopus 로고    scopus 로고
    • Graph partitioning into isolated, high conductance clusters: Theory, computation and applications to preconditioning
    • I. Koutis and G. L. Miller, Graph partitioning into isolated, high conductance clusters: Theory, computation and applications to preconditioning, Proc. of SPAA, 2008.
    • Proc. of SPAA, 2008
    • Koutis, I.1    Miller, G.L.2
  • 47
    • 0001837391 scopus 로고
    • Rank, decomposition, and uniqueness for 3-way and n-way arrays
    • R. Coppi and S. Bolasco, eds. NorthUcombining double acute accentHolland, Amsterdam
    • J. B. Kruskal, Rank, decomposition, and uniqueness for 3-way and n-way arrays, Multiway Data Analysis, R. Coppi and S. Bolasco, eds. NorthUcombining double acute accentHolland, Amsterdam, 1989, p. 7Ucombining double acute accent18.
    • (1989) Multiway Data Analysis , pp. 7-18
    • Kruskal, J.B.1
  • 48
    • 55249121402 scopus 로고    scopus 로고
    • The spectral method for general mixture models
    • R. Kannan, H. Salmasian, and S. Vempala, The spectral method for general mixture models, SIAM Journal on Computing 38 (2008), no. 3, 1141-1156.
    • (2008) SIAM Journal on Computing , vol.38 , Issue.3 , pp. 1141-1156
    • Kannan, R.1    Salmasian, H.2    Vempala, S.3
  • 50
    • 4243128193 scopus 로고    scopus 로고
    • On clusterings: Good, bad and spectral
    • R. Kannan, S. Vempala, and A. Vetta, On clusterings: Good, bad and spectral, J. ACM 51 (2004), no. 3, 497-515.
    • (2004) J. ACM , vol.51 , Issue.3 , pp. 497-515
    • Kannan, R.1    Vempala, S.2    Vetta, A.3
  • 51
    • 0035186726 scopus 로고    scopus 로고
    • Spectral partitioning of random graphs
    • F. McSherry, Spectral partitioning of random graphs, FOCS, 2001, pp. 529-537.
    • (2001) FOCS , pp. 529-537
    • McSherry, F.1
  • 55
    • 34547728320 scopus 로고    scopus 로고
    • Sampling from large matrices: An approach through geometric functional analysis
    • M. Rudelson and R. Vershynin, Sampling from large matrices: An approach through geometric functional analysis, Journal of the ACM 54 (2007), no. 4.
    • (2007) Journal of the ACM , vol.54 , Issue.4
    • Rudelson, M.1    Vershynin, R.2
  • 56
    • 35348901208 scopus 로고    scopus 로고
    • Improved approximation algorithms for large matrices via random projections
    • T. Sarlós, Improved approximation algorithms for large matrices via random projections, FOCS, 2006, pp. 143-152.
    • (2006) FOCS , pp. 143-152
    • Sarlós, T.1
  • 58
    • 33846251992 scopus 로고    scopus 로고
    • Spectral partitioning works: Planar graphs and finite element meshes
    • D. A. Spielman and S. Teng, Spectral partitioning works: Planar graphs and finite element meshes, Linear Algebra and its Applications 421 (2007), no. 2-3, 284-305.
    • (2007) Linear Algebra and Its Applications , vol.421 , Issue.2-3 , pp. 284-305
    • Spielman, D.A.1    Teng, S.2
  • 60
    • 49749100928 scopus 로고    scopus 로고
    • Less is more: Compact matrix decomposition for large sparse graphs
    • J. Sun, Y. Xie, H. Zhang, and Christos Faloutsos, Less is more: Compact matrix decomposition for large sparse graphs, SIAM Conference on Date Mining, 2007, pp. 26-28.
    • (2007) SIAM Conference on Date Mining , pp. 26-28
    • Sun, J.1    Xie, Y.2    Zhang, H.3    Faloutsos, C.4
  • 62
    • 34848901104 scopus 로고    scopus 로고
    • Spectral norm of random matrices
    • V. H. Vu, Spectral norm of random matrices, Proc. of STOC, 2005, pp. 423-430.
    • Proc. of STOC, 2005 , pp. 423-430
    • Vu, V.H.1
  • 63
    • 3042606899 scopus 로고    scopus 로고
    • A spectral algorithm for learning mixtures of distributions
    • S. Vempala and G. Wang, A spectral algorithm for learning mixtures of distributions, Journal of Computer and System Sciences 68 (2004), no. 4, 841-860.
    • (2004) Journal of Computer and System Sciences , vol.68 , Issue.4 , pp. 841-860
    • Vempala, S.1    Wang, G.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.