메뉴 건너뛰기




Volumn , Issue , 2010, Pages 867-878

Towards proximity pattern mining in large graphs

Author keywords

association; graph; mining; pattern

Indexed keywords

ASSOCIATION GRAPH; EMPIRICAL RESULTS; FP TREE; FREQUENT ITEMSETS; FREQUENT SUBGRAPHS; GRAPH MINING; GRAPH PATTERNS; ISOMORPHISM TESTING; ITEM SETS; ITEMSET; ITEMSET MINING; LARGE GRAPHS; LARGE NETWORKS; MALWARE DETECTION; PATTERN DEFINITION; PATTERN MINING; RIGID STRUCTURE;

EID: 77954693818     PISSN: 07308078     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1145/1807167.1807261     Document Type: Conference Paper
Times cited : (50)

References (40)
  • 1
    • 10944272139 scopus 로고    scopus 로고
    • Friends and neighbors on the web
    • L. A. Adamic and E. Adar. Friends and neighbors on the web. Social Networks, 25(3):211-230, 2003.
    • (2003) Social Networks , vol.25 , Issue.3 , pp. 211-230
    • Adamic, L.A.1    Adar, E.2
  • 2
    • 70350664429 scopus 로고    scopus 로고
    • Frequent pattern mining with uncertain data
    • C. C. Aggarwal, Y. Li, J. Wang, and J. Wang. Frequent pattern mining with uncertain data. In KDD, pages 29-38, 2009.
    • (2009) KDD , pp. 29-38
    • Aggarwal, C.C.1    Li, Y.2    Wang, J.3    Wang, J.4
  • 4
    • 0027621699 scopus 로고
    • Mining association rules between sets of items in large databases
    • R. Agrawal, T. Imielinski, and A. Swami. Mining association rules between sets of items in large databases. In SIGMOD, pages 69-84, 1993.
    • (1993) SIGMOD , pp. 69-84
    • Agrawal, R.1    Imielinski, T.2    Swami, A.3
  • 5
    • 0002221136 scopus 로고
    • Fast algorithms for mining association rules
    • R. Agrawal and R. Srikant. Fast algorithms for mining association rules. In VLDB, pages 487-499, 1994.
    • (1994) VLDB , pp. 487-499
    • Agrawal, R.1    Srikant, R.2
  • 6
    • 0033281173 scopus 로고    scopus 로고
    • Farm: A data mining system for discovering fuzzy association rules
    • W. Au and K. C. C. Chan. Farm: A data mining system for discovering fuzzy association rules. In FUZZY-IEEE, pages 1217-1222, 1999.
    • (1999) FUZZY-IEEE , pp. 1217-1222
    • Au, W.1    Chan, K.C.C.2
  • 7
    • 44649158325 scopus 로고    scopus 로고
    • What is frequent in a single graph?
    • S. Nijssen B. Bringmann. What is frequent in a single graph? In PAKDD, pages 858-863, 2008.
    • (2008) PAKDD , pp. 858-863
    • Nijssen, S.1    Bringmann, B.2
  • 8
    • 70350697587 scopus 로고    scopus 로고
    • Probabilistic frequent itemset mining in uncertain databases
    • T. Bernecker, H.-P. Kriegel, M. Renz, F. Verhein, and A. Zuefle. Probabilistic frequent itemset mining in uncertain databases. In KDD, pages 119-128, 2009.
    • (2009) KDD , pp. 119-128
    • Bernecker, T.1    Kriegel, H.-P.2    Renz, M.3    Verhein, F.4    Zuefle, A.5
  • 9
    • 4544291404 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt and M. R. Berthold. Mining molecular fragments: Finding relevant substructures of molecules. In ICDM, pages 211-218, 2002.
    • (2002) ICDM , pp. 211-218
    • Borgelt, C.1    Berthold, M.R.2
  • 10
    • 33747166110 scopus 로고    scopus 로고
    • Lets get personal: An international examination of the influence of communication, culture and social distance on other regarding preferences
    • N.R. Buchan, E.J. Johnson, and R.T.A. Croson. Lets get personal: An international examination of the influence of communication, culture and social distance on other regarding preferences. Journal of Economic Behavior and Organization, 60(3):373-398, 2006.
    • (2006) Journal of Economic Behavior and Organization , vol.60 , Issue.3 , pp. 373-398
    • Buchan, N.R.1    Johnson, E.J.2    Croson, R.T.A.3
  • 11
    • 33749543885 scopus 로고    scopus 로고
    • NeMoFinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs
    • J. Chen, W. Hsu, M.-L. Lee, and S.-K. Ng. NeMoFinder: Dissecting genome-wide protein-protein interactions with meso-scale network motifs. In KDD, pages 106-115, 2006.
    • (2006) KDD , pp. 106-115
    • Chen, J.1    Hsu, W.2    Lee, M.-L.3    Ng, S.-K.4
  • 12
    • 35448982399 scopus 로고    scopus 로고
    • FG-Index: Towards verification-free query processing on graph databases
    • J. Cheng, Y. Ke, W. Ng, and A. Lu. FG-Index: Towards verification-free query processing on graph databases. In SIGMOD, 2007.
    • (2007) SIGMOD
    • Cheng, J.1    Ke, Y.2    Ng, W.3    Lu, A.4
  • 14
    • 84925930275 scopus 로고
    • The focused organization of social ties
    • S. Feld. The focused organization of social ties. American Journal of Sociology, 86:1015-1035, 1981.
    • (1981) American Journal of Sociology , vol.86 , pp. 1015-1035
    • Feld, S.1
  • 15
    • 44649184767 scopus 로고    scopus 로고
    • Support computation for mining frequent subgraphs in a single graph
    • M. Fiedler and C. Borgelt. Support computation for mining frequent subgraphs in a single graph. In MLG, pages 25-30, 2007.
    • (2007) MLG , pp. 25-30
    • Fiedler, M.1    Borgelt, C.2
  • 16
    • 0039253846 scopus 로고    scopus 로고
    • Mining frequent patterns without candidate generation
    • J. Han, J. Pei, and Y. Yin. Mining frequent patterns without candidate generation. In SIGMOD, pages 1-12, 2000.
    • (2000) SIGMOD , pp. 1-12
    • Han, J.1    Pei, J.2    Yin, Y.3
  • 17
    • 49749125569 scopus 로고    scopus 로고
    • Efficient algorithms for mining significant substructures in graphs with quality guarantees
    • H. He and A. Singh. Efficient algorithms for mining significant substructures in graphs with quality guarantees. In ICDM, page 163Ucombining double acute accent172, 2007.
    • (2007) ICDM , pp. 163-172
    • He, H.1    Singh, A.2
  • 19
    • 4544314758 scopus 로고
    • Substructure discovery in the subdue system
    • L. B. Holder, D. J. Cook, and S. Djoko. Substructure discovery in the subdue system. In KDD, pages 169-180, 1994.
    • (1994) KDD , pp. 169-180
    • Holder, L.B.1    Cook, D.J.2    Djoko, S.3
  • 21
    • 12244294770 scopus 로고    scopus 로고
    • Spin: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. Spin: Mining maximal frequent subgraphs from graph databases. In KDD, pages 581-586, 2004.
    • (2004) KDD , pp. 581-586
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 22
    • 84974733299 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. In PKDD, pages 13-23, 1998.
    • (1998) PKDD , pp. 13-23
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 23
    • 78149312583 scopus 로고    scopus 로고
    • Frequent subgraph discovery
    • M. Kuramochi and G. Karypis. Frequent subgraph discovery. In ICDM, pages 313-320, 2001.
    • (2001) ICDM , pp. 313-320
    • Kuramochi, M.1    Karypis, G.2
  • 24
    • 12244310989 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi and G. Karypis. Finding frequent patterns in a large sparse graph. In SDM, 2004.
    • (2004) SDM
    • Kuramochi, M.1    Karypis, G.2
  • 25
    • 0001862139 scopus 로고
    • Friendship as a social process: A substantive and methodological analysis
    • Van Nostrand
    • P. Lazarsfeld and R. Merton. Friendship as a social process: A substantive and methodological analysis. In Freedom and Control in Modern Society, pages 18-66. Van Nostrand, 1954.
    • (1954) Freedom and Control in Modern Society , pp. 18-66
    • Lazarsfeld, P.1    Merton, R.2
  • 27
    • 0002687371 scopus 로고
    • The small world problem
    • S. Milgram. The small world problem. Psychology Today, 6:62-67, 1967.
    • (1967) Psychology Today , vol.6 , pp. 62-67
    • Milgram, S.1
  • 28
    • 12244294066 scopus 로고    scopus 로고
    • A quick start in frequent structure mining can make a difference
    • S. Nijssen and J. Kok. A quick start in frequent structure mining can make a difference. In KDD, pages 647-652, 2004.
    • (2004) KDD , pp. 647-652
    • Nijssen, S.1    Kok, J.2
  • 30
  • 32
    • 78149322987 scopus 로고    scopus 로고
    • Computing frequent graph patterns from semistructured data
    • N. Vanetik, E. Gudes, and S. E. Shimony. Computing frequent graph patterns from semistructured data. In ICDM, pages 458-465, 2002.
    • (2002) ICDM , pp. 458-465
    • Vanetik, N.1    Gudes, E.2    Shimony, S.E.3
  • 33
    • 84945313061 scopus 로고    scopus 로고
    • Top down fp-growth for association rule mining
    • K. Wang, L. Tang, J. Han, and J. Liu. Top down fp-growth for association rule mining. In PAKDD, pages 334-340, 2002.
    • (2002) PAKDD , pp. 334-340
    • Wang, K.1    Tang, L.2    Han, J.3    Liu, J.4
  • 35
    • 57149124218 scopus 로고    scopus 로고
    • Mining significant graph patterns by leap search
    • X. Yan, H. Cheng, J. Han, and P. S. Yu. Mining significant graph patterns by leap search. In SIGMOD, pages 433-444, 2008.
    • (2008) SIGMOD , pp. 433-444
    • Yan, X.1    Cheng, H.2    Han, J.3    Yu, P.S.4
  • 36
    • 78149333073 scopus 로고    scopus 로고
    • gSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: Graph-based substructure pattern mining. In ICDM, pages 721-724, 2002.
    • (2002) ICDM , pp. 721-724
    • Yan, X.1    Han, J.2
  • 37
    • 3142736597 scopus 로고    scopus 로고
    • Graph indexing: A frequent structure-based approach
    • X. Yan, P. S. Yu, and J. Han. Graph indexing: A frequent structure-based approach. In SIGMOD, pages 335-346, 2004.
    • (2004) SIGMOD , pp. 335-346
    • Yan, X.1    Yu, P.S.2    Han, J.3
  • 38
    • 33748578954 scopus 로고    scopus 로고
    • Computational aspects of mining maximal frequent patterns
    • Guizhen Yang. Computational aspects of mining maximal frequent patterns. Theor. Comput. Sci., 362(1):63-85, 2006.
    • (2006) Theor. Comput. Sci. , vol.362 , Issue.1 , pp. 63-85
    • Yang, G.1
  • 40
    • 85011066999 scopus 로고    scopus 로고
    • Graph indexing: Tree + delta >= graph
    • P. Zhao, J. Yu, and P. Yu. Graph indexing: tree + delta >= graph. In VLDB, pages 938-949, 2007.
    • (2007) VLDB , pp. 938-949
    • Zhao, P.1    Yu, J.2    Yu, P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.