메뉴 건너뛰기




Volumn 2, Issue , 2008, Pages 168-212

Penalized model-based clustering with cluster-specific diagonal covariance matrices and grouped variables

Author keywords

BIC; EM algorithm; High dimension but low sample size; L1 penalization; Microarray gene expression; Mixture model; Penalized likelihood

Indexed keywords


EID: 70449374222     PISSN: 19357524     EISSN: None     Source Type: Journal    
DOI: 10.1214/08-EJS194     Document Type: Article
Times cited : (62)

References (59)
  • 1
    • 0037140072 scopus 로고    scopus 로고
    • Molecular classification of borderline ovarian tumors using hierarchical cluster analysis of protein expression profiles
    • Alaiya, A.A. et al. (2002). Molecular classification of borderline ovarian tumors using hierarchical cluster analysis of protein expression profiles. Int. J. Cancer, 98, 895-899.
    • (2002) Int. J. Cancer , vol.98 , pp. 895-899
    • Alaiya, A.A.1
  • 2
    • 1842559888 scopus 로고    scopus 로고
    • Optimization models for cancer classification: Extracting gene interaction information from microarray expression data
    • Antonov AV, Tetko IV, Mader MT, Budczies J, Mewes HW. (2004). Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics, 20, 644-652.
    • (2004) Bioinformatics , vol.20 , pp. 644-652
    • Antonov, A.V.1    Tetko, I.V.2    Mader, M.T.3    Budczies, J.4    Mewes, H.W.5
  • 3
    • 33749030973 scopus 로고    scopus 로고
    • Identifying genes that contribute most to good classification in microarrays
    • Sep
    • Baker, Stuart G. and Kramer, Barnett S. (2006). Identifying genes that contribute most to good classification in microarrays. BMC Bioinformatics, Sep 7 7:407.
    • (2006) BMC Bioinformatics , vol.7 , Issue.7
    • Baker, S.G.1    Kramer, B.S.2
  • 5
    • 33745156863 scopus 로고    scopus 로고
    • Some theory for Fisher’s linear discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations
    • Bickel P.J., Levina E. (2004). Some theory for Fisher’s linear discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations. Bernoulli, 10, 989-1010.
    • (2004) Bernoulli , vol.10 , pp. 989-1010
    • Bickel, P.J.1    Levina, E.2
  • 6
    • 0002629270 scopus 로고
    • Maximum likelihood from incomplete data via the EM algorithm (With discussion)
    • Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). JRSS-B 39, 1-38.
    • (1977) JRSS-B , vol.39 , pp. 1-38
    • Dempster, A.P.1    Laird, N.M.2    Rubin, D.B.3
  • 7
    • 0036489046 scopus 로고    scopus 로고
    • Comparison of discrimination methods for the classification of tumors using gene expression data
    • Dudoit S, Fridlyand J, Speed T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 97, 77-87.
    • (2002) J. Am. Stat. Assoc. , vol.97 , pp. 77-87
    • Dudoit, S.1    Fridlyand, J.2    Speed, T.3
  • 8
    • 35348890683 scopus 로고    scopus 로고
    • On testing the significance of sets of genes
    • Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes. Annals of Applied Statistics. 1, 107-129.
    • (2007) Annals of Applied Statistics , vol.1 , pp. 107-129
    • Efron, B.1    Tibshirani, R.2
  • 10
    • 0032441150 scopus 로고    scopus 로고
    • Cluster analysis and display of genome-wide expression patterns
    • Eisen M, Spellman P, Brown P and Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863-14868.
    • (1998) PNAS , vol.95 , pp. 14863-14868
    • Eisen, M.1    Spellman, P.2    Brown, P.3    Botstein, D.4
  • 11
    • 8644255832 scopus 로고    scopus 로고
    • Clustering objects on sub-sets of attributes (With discussion)
    • Friedman, J.H. and Meulman, J.J. (2004). Clustering objects on sub-sets of attributes (with discussion), J. Royal Statist. Soc. B 66, 1-25.
    • (2004) J. Royal Statist. Soc. B , vol.66 , pp. 1-25
    • Friedman, J.H.1    Meulman, J.J.2
  • 13
    • 0036188158 scopus 로고    scopus 로고
    • Mixture modeling of gene expression data from microarray experiments
    • Ghosh D, Chinnaiyan, AM. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics, 18, 275-286.
    • (2002) Bioinformatics , vol.18 , pp. 275-286
    • Ghosh, D.1    Chinnaiyan, A.M.2
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
    • Golub T et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.1
  • 16
    • 23744488295 scopus 로고    scopus 로고
    • Optimal smoothing in nonparametric mixedeffect models
    • Gu, C. and Ma, P. (2005). Optimal smoothing in nonparametric mixedeffect models. Ann. Statist., 33, 377-403.
    • (2005) Ann. Statist. , vol.33 , pp. 377-403
    • Gu, C.1    Ma, P.2
  • 17
    • 33646705989 scopus 로고    scopus 로고
    • Discussion of ‘Clustering objects on subsets of attributes’
    • by J. Friedman and J. Meulman
    • Hoff, P.D. (2004). Discussion of ‘Clustering objects on subsets of attributes’ by J. Friedman and J. Meulman. Journal of the Royal Statistical Society, Series B, 66, 845.
    • (2004) Journal of the Royal Statistical Society, Series B , vol.66
    • Hoff, P.D.1
  • 18
    • 33645992615 scopus 로고    scopus 로고
    • Model-based subspace clustering
    • Hoff P.D. (2006). Model-based subspace clustering. Bayesian Analysis, 1, 321-344.
    • (2006) Bayesian Analysis , vol.1 , pp. 321-344
    • Hoff, P.D.1
  • 19
    • 0036690521 scopus 로고    scopus 로고
    • Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays
    • Huang, X. and Pan, W. (2002). Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays. Functional & Integrative Genomics, 2, 126-133.
    • (2002) Functional & Integrative Genomics , vol.2 , pp. 126-133
    • Huang, X.1    Pan, W.2
  • 20
    • 33646895693 scopus 로고    scopus 로고
    • Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
    • Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics, 22, 1259-1268.
    • (2006) Bioinformatics , vol.22 , pp. 1259-1268
    • Huang, D.1    Pan, W.2
  • 21
    • 33644986127 scopus 로고    scopus 로고
    • Covariance selection and estimation via penalised normal likelihood
    • Huang, J. Z., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance selection and estimation via penalised normal likelihood. Biometrika, 93, 85-98.
    • (2006) Biometrika , vol.93 , pp. 85-98
    • Huang, J.Z.1    Liu, N.2    Pourahmadi, M.3    Liu, L.4
  • 23
    • 0033982936 scopus 로고    scopus 로고
    • KEGG: Kyoto Encyclopedia of Genes and Genomes
    • Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res., 28, 27-30.
    • (2000) Nucleic Acids Res. , vol.28 , pp. 27-30
    • Kanehisa, M.1    Goto, S.2
  • 25
    • 33845734547 scopus 로고    scopus 로고
    • Variable selection in clustering via Dirichlet process mixture models
    • Kim, S., Tadesse, M.G. and Vannucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika, 93, 877-893.
    • (2006) Biometrika , vol.93 , pp. 877-893
    • Kim, S.1    Tadesse, M.G.2    Vannucci, M.3
  • 26
    • 33645818761 scopus 로고    scopus 로고
    • Structured polychotomous machine diagnosis of multiple cancer types using gene expression
    • Koo, J. Y., Sohn, I., Kim, S., and Lee, J. (2006). Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics, 22, 950-958.
    • (2006) Bioinformatics , vol.22 , pp. 950-958
    • Koo, J.Y.1    Sohn, I.2    Kim, S.3    Lee, J.4
  • 27
    • 18144444239 scopus 로고    scopus 로고
    • Cluster-Rasch models for microarray gene expression data
    • research0031.1-0031.13
    • Li H. and Hong F. (2001). Cluster-Rasch models for microarray gene expression data. Genome Biology 2 research0031.1-0031.13.
    • (2001) Genome Biology
    • Li, H.1    Hong, F.2
  • 28
    • 34548125448 scopus 로고    scopus 로고
    • Logistic regression for disease classification using microarray data: Model selection in a large p and small n case
    • Liao, J.G. and Chin, K.V. (2007). Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics, 23, 1945-1951.
    • (2007) Bioinformatics , vol.23 , pp. 1945-1951
    • Liao, J.G.1    Chin, K.V.2
  • 29
    • 0033475436 scopus 로고    scopus 로고
    • Inference in generalized additive mixed models by using smoothing splines
    • Lin, X. and Zhang, D. (1999). Inference in generalized additive mixed models by using smoothing splines. JRSS-B, 61, 381-400.
    • (1999) JRSS-B , vol.61 , pp. 381-400
    • Lin, X.1    Zhang, D.2
  • 30
    • 15044339834 scopus 로고    scopus 로고
    • Bayesian clustering with variable and transformation selection (With discussion)
    • Liu JS, Zhang JL, Palumbo MJ, Lawrence CE. (2003). Bayesian clustering with variable and transformation selection (with discussion). Bayesian Statistics 7, 249-275.
    • (2003) Bayesian Statistics , vol.7 , pp. 249-275
    • Liu, J.S.1    Zhang, J.L.2    Palumbo, M.J.3    Lawrence, C.E.4
  • 31
    • 33644855951 scopus 로고    scopus 로고
    • A data-driven clustering method for time course gene expression data
    • Ma, P., Castillo-Davis, C.I., Zhong, W. and Liu, J.S. (2006). A data-driven clustering method for time course gene expression data. Nucleic Acids Research, 34, 1261-1269.
    • (2006) Nucleic Acids Research , vol.34 , pp. 1261-1269
    • Ma, P.1    Castillo-Davis, C.I.2    Zhong, W.3    Liu, J.S.4
  • 33
    • 0036203115 scopus 로고    scopus 로고
    • A mixture model-based approach to the clustering of microarray expression data
    • McLachlan, G.J., Bean, R.W. and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413-422.
    • (2002) Bioinformatics , vol.18 , pp. 413-422
    • McLachlan, G.J.1    Bean, R.W.2    Peel, D.3
  • 37
    • 33645673675 scopus 로고    scopus 로고
    • Incorporating gene functional annotations in detecting differential gene expression
    • Pan, W. (2006). Incorporating gene functional annotations in detecting differential gene expression. Applied Statistics, 55, 301-316.
    • (2006) Applied Statistics , vol.55 , pp. 301-316
    • Pan, W.1
  • 38
    • 33645289673 scopus 로고    scopus 로고
    • Incorporating gene functions as priors in model-based clustering of microarray gene expression data
    • Pan W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, 22, 795-801.
    • (2006) Bioinformatics , vol.22 , pp. 795-801
    • Pan, W.1
  • 39
    • 34249029861 scopus 로고    scopus 로고
    • Penalized model-based clustering with application to variable selection
    • Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research, 8, 1145-1164.
    • (2007) Journal of Machine Learning Research , vol.8 , pp. 1145-1164
    • Pan, W.1    Shen, X.2
  • 40
    • 33750022956 scopus 로고    scopus 로고
    • Semi-supervised learning via penalized mixture model with application to microarray sample classification
    • Pan, W., Shen, X., Jiang, A., Hebbel, R.P. (2006). Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22, 2388-2395.
    • (2006) Bioinformatics , vol.22 , pp. 2388-2395
    • Pan, W.1    Shen, X.2    Jiang, A.3    Hebbel, R.P.4
  • 42
    • 84950632109 scopus 로고
    • Objective criteria for the evaluation of clustering methods
    • Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. JASA, 66, 846-850.
    • (1971) JASA , vol.66 , pp. 846-850
    • Rand, W.M.1
  • 44
    • 33750021210 scopus 로고    scopus 로고
    • Evaluation and comparison of gene clustering methods in microarray analysis
    • Thalamuthu A., Mukhopadhyay I., Zheng X. and Tseng G.C. (2006). Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-2412.
    • (2006) Bioinformatics , vol.22 , pp. 2405-2412
    • Thalamuthu, A.1    Mukhopadhyay, I.2    Zheng, X.3    Tseng, G.C.4
  • 45
    • 26444608611 scopus 로고    scopus 로고
    • Discovering statistically significant pathways in expression profiling studies
    • Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. (2005). Discovering statistically significant pathways in expression profiling studies. PNAS 102, 13544-13549.
    • (2005) PNAS , vol.102 , pp. 13544-13549
    • Tian, L.1    Greenberg, S.A.2    Kong, S.W.3    Altschuler, J.4    Kohane, I.S.5    Park, P.J.6
  • 46
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JRSS-B, 58, 267-288.
    • (1996) JRSS-B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 47
    • 2342533421 scopus 로고    scopus 로고
    • Class prediction by nearest shrunken centroids, with application to DNA microarrays
    • Tibshirani R, Hastie T, Narasimhan B, Chu G. (2003). Class prediction by nearest shrunken centroids, with application to DNA microarrays. Statistical Science 18, 104-117.
    • (2003) Statistical Science , vol.18 , pp. 104-117
    • Tibshirani, R.1    Hastie, T.2    Narasimhan, B.3    Chu, G.4
  • 48
    • 0025950015 scopus 로고
    • Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia
    • Tycko, B., Smith, S.D. and Sklar, J. (1991). Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. Journal of Experimental Medicine, 174, 867-873.
    • (1991) Journal of Experimental Medicine , vol.174 , pp. 867-873
    • Tycko, B.1    Smith, S.D.2    Sklar, J.3
  • 49
  • 51
    • 0028353897 scopus 로고
    • Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human T-cell leukemia
    • Wright, D.D., Sefton, B.M. and Kamps, M.P. (1994). Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human T-cell leukemia. Mol Cell Biol., 14, 2429-2437.
    • (1994) Mol Cell Biol. , vol.14 , pp. 2429-2437
    • Wright, D.D.1    Sefton, B.M.2    Kamps, M.P.3
  • 53
    • 0034782618 scopus 로고    scopus 로고
    • Model-based clustering and data transformations for gene expression data
    • Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977-987.
    • (2001) Bioinformatics , vol.17 , pp. 977-987
    • Yeung, K.Y.1    Fraley, C.2    Murua, A.3    Raftery, A.E.4    Ruzzo, W.L.5
  • 54
    • 33645035051 scopus 로고    scopus 로고
    • Model selection and estimation in regression with grouped variables
    • Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. JRSS-B, 68, 49-67.
    • (2006) JRSS-B , vol.68 , pp. 49-67
    • Yuan, M.1    Lin, Y.2
  • 55
    • 33947115409 scopus 로고    scopus 로고
    • Model selection and estimation in the 2 Gaussian graphical model
    • Yuan, M. and Lin, Y. (2007), Model selection and estimation in the 2 Gaussian graphical model. Biometrika, 94, 19-35.
    • (2007) Biometrika , vol.94 , pp. 19-35
    • Yuan, M.1    Lin, Y.2
  • 57
    • 33846114377 scopus 로고    scopus 로고
    • The Adaptive Lasso and Its Oracle Properties
    • Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. JASA, 101, 1418-1429.
    • (2006) JASA , vol.101 , pp. 1418-1429
    • Zou, H.1
  • 58
    • 16244401458 scopus 로고    scopus 로고
    • Regularization and variable selection via the elastic net
    • Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67, 301-320.
    • (2005) Journal of the Royal Statistical Society B , vol.67 , pp. 301-320
    • Zou, H.1    Hastie, T.2
  • 59
    • 85035264284 scopus 로고    scopus 로고
    • On the “Degrees of Freedom” of the Lasso
    • Zou H, Hastie T, Tibshirani R. (2004). On the “Degrees of Freedom” of the Lasso. To appear Ann. Statistics. Available at http://stat.stanford.edu/˜hastie/pub.htm.
    • (2004) Ann. Statistics
    • Zou, H.1    Hastie, T.2    Tibshirani, R.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.