-
1
-
-
0037140072
-
Molecular classification of borderline ovarian tumors using hierarchical cluster analysis of protein expression profiles
-
Alaiya, A.A. et al. (2002). Molecular classification of borderline ovarian tumors using hierarchical cluster analysis of protein expression profiles. Int. J. Cancer, 98, 895-899.
-
(2002)
Int. J. Cancer
, vol.98
, pp. 895-899
-
-
Alaiya, A.A.1
-
2
-
-
1842559888
-
Optimization models for cancer classification: Extracting gene interaction information from microarray expression data
-
Antonov AV, Tetko IV, Mader MT, Budczies J, Mewes HW. (2004). Optimization models for cancer classification: extracting gene interaction information from microarray expression data. Bioinformatics, 20, 644-652.
-
(2004)
Bioinformatics
, vol.20
, pp. 644-652
-
-
Antonov, A.V.1
Tetko, I.V.2
Mader, M.T.3
Budczies, J.4
Mewes, H.W.5
-
3
-
-
33749030973
-
Identifying genes that contribute most to good classification in microarrays
-
Sep
-
Baker, Stuart G. and Kramer, Barnett S. (2006). Identifying genes that contribute most to good classification in microarrays. BMC Bioinformatics, Sep 7 7:407.
-
(2006)
BMC Bioinformatics
, vol.7
, Issue.7
-
-
Baker, S.G.1
Kramer, B.S.2
-
4
-
-
4844224901
-
Cystatin C is a suitable marker of glomerular function in children with cancer
-
Bardi E, Bobok I, Olah AV, Olah E, Kappelmayer J, Kiss C. (2004). Cystatin C is a suitable marker of glomerular function in children with cancer Pediatric Nephrology, 19, 1145-1147.
-
(2004)
Pediatric Nephrology
, vol.19
, pp. 1145-1147
-
-
Bardi, E.1
Bobok, I.2
Olah, A.V.3
Olah, E.4
Kappelmayer, J.5
Kiss, C.6
-
5
-
-
33745156863
-
Some theory for Fisher’s linear discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations
-
Bickel P.J., Levina E. (2004). Some theory for Fisher’s linear discriminant function, “naive Bayes”, and some alternatives when there are many more variables than observations. Bernoulli, 10, 989-1010.
-
(2004)
Bernoulli
, vol.10
, pp. 989-1010
-
-
Bickel, P.J.1
Levina, E.2
-
6
-
-
0002629270
-
Maximum likelihood from incomplete data via the EM algorithm (With discussion)
-
Dempster AP, Laird NM, Rubin DB. (1977). Maximum likelihood from incomplete data via the EM algorithm (with discussion). JRSS-B 39, 1-38.
-
(1977)
JRSS-B
, vol.39
, pp. 1-38
-
-
Dempster, A.P.1
Laird, N.M.2
Rubin, D.B.3
-
7
-
-
0036489046
-
Comparison of discrimination methods for the classification of tumors using gene expression data
-
Dudoit S, Fridlyand J, Speed T. (2002). Comparison of discrimination methods for the classification of tumors using gene expression data. J. Am. Stat. Assoc., 97, 77-87.
-
(2002)
J. Am. Stat. Assoc.
, vol.97
, pp. 77-87
-
-
Dudoit, S.1
Fridlyand, J.2
Speed, T.3
-
8
-
-
35348890683
-
On testing the significance of sets of genes
-
Efron, B. and Tibshirani, R. (2007). On testing the significance of sets of genes. Annals of Applied Statistics. 1, 107-129.
-
(2007)
Annals of Applied Statistics
, vol.1
, pp. 107-129
-
-
Efron, B.1
Tibshirani, R.2
-
9
-
-
3242708140
-
Least angle regression
-
Efron B, Hastie T, Johnstone I, Tibshirani R. (2004). Least angle regression. Annals of Statistics 32, 407-499.
-
(2004)
Annals of Statistics
, vol.32
, pp. 407-499
-
-
Efron, B.1
Hastie, T.2
Johnstone, I.3
Tibshirani, R.4
-
10
-
-
0032441150
-
Cluster analysis and display of genome-wide expression patterns
-
Eisen M, Spellman P, Brown P and Botstein D. (1998). Cluster analysis and display of genome-wide expression patterns. PNAS 95, 14863-14868.
-
(1998)
PNAS
, vol.95
, pp. 14863-14868
-
-
Eisen, M.1
Spellman, P.2
Brown, P.3
Botstein, D.4
-
11
-
-
8644255832
-
Clustering objects on sub-sets of attributes (With discussion)
-
Friedman, J.H. and Meulman, J.J. (2004). Clustering objects on sub-sets of attributes (with discussion), J. Royal Statist. Soc. B 66, 1-25.
-
(2004)
J. Royal Statist. Soc. B
, vol.66
, pp. 1-25
-
-
Friedman, J.H.1
Meulman, J.J.2
-
13
-
-
0036188158
-
Mixture modeling of gene expression data from microarray experiments
-
Ghosh D, Chinnaiyan, AM. (2002). Mixture modeling of gene expression data from microarray experiments. Bioinformatics, 18, 275-286.
-
(2002)
Bioinformatics
, vol.18
, pp. 275-286
-
-
Ghosh, D.1
Chinnaiyan, A.M.2
-
14
-
-
21844501258
-
Weighting and selection of variables for cluster analysis
-
Gnanadesikan, R., Kettenring, J.R. and Tsao, S.L. (1995). Weighting and selection of variables for cluster analysis. Journal of Classification, 12, 113-136.
-
(1995)
Journal of Classification
, vol.12
, pp. 113-136
-
-
Gnanadesikan, R.1
Kettenring, J.R.2
Tsao, S.L.3
-
15
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub T et al. (1999). Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.1
-
16
-
-
23744488295
-
Optimal smoothing in nonparametric mixedeffect models
-
Gu, C. and Ma, P. (2005). Optimal smoothing in nonparametric mixedeffect models. Ann. Statist., 33, 377-403.
-
(2005)
Ann. Statist.
, vol.33
, pp. 377-403
-
-
Gu, C.1
Ma, P.2
-
17
-
-
33646705989
-
Discussion of ‘Clustering objects on subsets of attributes’
-
by J. Friedman and J. Meulman
-
Hoff, P.D. (2004). Discussion of ‘Clustering objects on subsets of attributes’ by J. Friedman and J. Meulman. Journal of the Royal Statistical Society, Series B, 66, 845.
-
(2004)
Journal of the Royal Statistical Society, Series B
, vol.66
-
-
Hoff, P.D.1
-
18
-
-
33645992615
-
Model-based subspace clustering
-
Hoff P.D. (2006). Model-based subspace clustering. Bayesian Analysis, 1, 321-344.
-
(2006)
Bayesian Analysis
, vol.1
, pp. 321-344
-
-
Hoff, P.D.1
-
19
-
-
0036690521
-
Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays
-
Huang, X. and Pan, W. (2002). Comparing three methods for variance estimation with duplicated high density oligonucleotide arrays. Functional & Integrative Genomics, 2, 126-133.
-
(2002)
Functional & Integrative Genomics
, vol.2
, pp. 126-133
-
-
Huang, X.1
Pan, W.2
-
20
-
-
33646895693
-
Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data
-
Huang, D. and Pan, W. (2006). Incorporating biological knowledge into distance-based clustering analysis of microarray gene expression data. Bioinformatics, 22, 1259-1268.
-
(2006)
Bioinformatics
, vol.22
, pp. 1259-1268
-
-
Huang, D.1
Pan, W.2
-
21
-
-
33644986127
-
Covariance selection and estimation via penalised normal likelihood
-
Huang, J. Z., Liu, N., Pourahmadi, M., and Liu, L. (2006). Covariance selection and estimation via penalised normal likelihood. Biometrika, 93, 85-98.
-
(2006)
Biometrika
, vol.93
, pp. 85-98
-
-
Huang, J.Z.1
Liu, N.2
Pourahmadi, M.3
Liu, L.4
-
23
-
-
0033982936
-
KEGG: Kyoto Encyclopedia of Genes and Genomes
-
Kanehisa, M. and Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res., 28, 27-30.
-
(2000)
Nucleic Acids Res.
, vol.28
, pp. 27-30
-
-
Kanehisa, M.1
Goto, S.2
-
25
-
-
33845734547
-
Variable selection in clustering via Dirichlet process mixture models
-
Kim, S., Tadesse, M.G. and Vannucci, M. (2006). Variable selection in clustering via Dirichlet process mixture models. Biometrika, 93, 877-893.
-
(2006)
Biometrika
, vol.93
, pp. 877-893
-
-
Kim, S.1
Tadesse, M.G.2
Vannucci, M.3
-
26
-
-
33645818761
-
Structured polychotomous machine diagnosis of multiple cancer types using gene expression
-
Koo, J. Y., Sohn, I., Kim, S., and Lee, J. (2006). Structured polychotomous machine diagnosis of multiple cancer types using gene expression. Bioinformatics, 22, 950-958.
-
(2006)
Bioinformatics
, vol.22
, pp. 950-958
-
-
Koo, J.Y.1
Sohn, I.2
Kim, S.3
Lee, J.4
-
27
-
-
18144444239
-
Cluster-Rasch models for microarray gene expression data
-
research0031.1-0031.13
-
Li H. and Hong F. (2001). Cluster-Rasch models for microarray gene expression data. Genome Biology 2 research0031.1-0031.13.
-
(2001)
Genome Biology
-
-
Li, H.1
Hong, F.2
-
28
-
-
34548125448
-
Logistic regression for disease classification using microarray data: Model selection in a large p and small n case
-
Liao, J.G. and Chin, K.V. (2007). Logistic regression for disease classification using microarray data: model selection in a large p and small n case. Bioinformatics, 23, 1945-1951.
-
(2007)
Bioinformatics
, vol.23
, pp. 1945-1951
-
-
Liao, J.G.1
Chin, K.V.2
-
29
-
-
0033475436
-
Inference in generalized additive mixed models by using smoothing splines
-
Lin, X. and Zhang, D. (1999). Inference in generalized additive mixed models by using smoothing splines. JRSS-B, 61, 381-400.
-
(1999)
JRSS-B
, vol.61
, pp. 381-400
-
-
Lin, X.1
Zhang, D.2
-
30
-
-
15044339834
-
Bayesian clustering with variable and transformation selection (With discussion)
-
Liu JS, Zhang JL, Palumbo MJ, Lawrence CE. (2003). Bayesian clustering with variable and transformation selection (with discussion). Bayesian Statistics 7, 249-275.
-
(2003)
Bayesian Statistics
, vol.7
, pp. 249-275
-
-
Liu, J.S.1
Zhang, J.L.2
Palumbo, M.J.3
Lawrence, C.E.4
-
31
-
-
33644855951
-
A data-driven clustering method for time course gene expression data
-
Ma, P., Castillo-Davis, C.I., Zhong, W. and Liu, J.S. (2006). A data-driven clustering method for time course gene expression data. Nucleic Acids Research, 34, 1261-1269.
-
(2006)
Nucleic Acids Research
, vol.34
, pp. 1261-1269
-
-
Ma, P.1
Castillo-Davis, C.I.2
Zhong, W.3
Liu, J.S.4
-
32
-
-
32844472040
-
Feature selection in k-median clustering
-
April 24, 2004, La Buena Vista, FL
-
Mangasarian, OL, Wild EW. (2004). Feature selection in k-median clustering. Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and its Applications, April 24, 2004, La Buena Vista, FL, pages 23-28.
-
(2004)
Proceedings of SIAM International Conference on Data Mining, Workshop on Clustering High Dimensional Data and Its Applications
, pp. 23-28
-
-
Mangasarian, O.L.1
Wild, E.W.2
-
33
-
-
0036203115
-
A mixture model-based approach to the clustering of microarray expression data
-
McLachlan, G.J., Bean, R.W. and Peel, D. (2002). A mixture model-based approach to the clustering of microarray expression data. Bioinformatics, 18, 413-422.
-
(2002)
Bioinformatics
, vol.18
, pp. 413-422
-
-
McLachlan, G.J.1
Bean, R.W.2
Peel, D.3
-
35
-
-
0037469105
-
Modeling high-dimensional data by mixtures of factor analyzers
-
McLachlan, G.J., Peel, D. and Bean, R.W. (2003). Modeling high-dimensional data by mixtures of factor analyzers. Computational Statistics and Data Analysis, 41, 379-388.
-
(2003)
Computational Statistics and Data Analysis
, vol.41
, pp. 379-388
-
-
McLachlan, G.J.1
Peel, D.2
Bean, R.W.3
-
36
-
-
34250305651
-
Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis
-
Newton, M.A., Quintana, F.A., den Boon, J.A., Sengupta, S. and Ahlquist, P. (2007). Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis. Annals of Applied Statistics, 1, 85-106.
-
(2007)
Annals of Applied Statistics
, vol.1
, pp. 85-106
-
-
Newton, M.A.1
Quintana, F.A.2
Den Boon, J.A.3
Sengupta, S.4
Ahlquist, P.5
-
37
-
-
33645673675
-
Incorporating gene functional annotations in detecting differential gene expression
-
Pan, W. (2006). Incorporating gene functional annotations in detecting differential gene expression. Applied Statistics, 55, 301-316.
-
(2006)
Applied Statistics
, vol.55
, pp. 301-316
-
-
Pan, W.1
-
38
-
-
33645289673
-
Incorporating gene functions as priors in model-based clustering of microarray gene expression data
-
Pan W. (2006b). Incorporating gene functions as priors in model-based clustering of microarray gene expression data. Bioinformatics, 22, 795-801.
-
(2006)
Bioinformatics
, vol.22
, pp. 795-801
-
-
Pan, W.1
-
39
-
-
34249029861
-
Penalized model-based clustering with application to variable selection
-
Pan, W. and Shen, X. (2007). Penalized model-based clustering with application to variable selection. Journal of Machine Learning Research, 8, 1145-1164.
-
(2007)
Journal of Machine Learning Research
, vol.8
, pp. 1145-1164
-
-
Pan, W.1
Shen, X.2
-
40
-
-
33750022956
-
Semi-supervised learning via penalized mixture model with application to microarray sample classification
-
Pan, W., Shen, X., Jiang, A., Hebbel, R.P. (2006). Semi-supervised learning via penalized mixture model with application to microarray sample classification. Bioinformatics 22, 2388-2395.
-
(2006)
Bioinformatics
, vol.22
, pp. 2388-2395
-
-
Pan, W.1
Shen, X.2
Jiang, A.3
Hebbel, R.P.4
-
42
-
-
84950632109
-
Objective criteria for the evaluation of clustering methods
-
Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods. JASA, 66, 846-850.
-
(1971)
JASA
, vol.66
, pp. 846-850
-
-
Rand, W.M.1
-
43
-
-
20444465712
-
Bayesian variable selection in clustering high-dimensional data
-
Tadesse, M.G., Sha, N. and Vannucci, M. (2005). Bayesian variable selection in clustering high-dimensional data. Journal of the American Statistical Association, 100, 602-617.
-
(2005)
Journal of the American Statistical Association
, vol.100
, pp. 602-617
-
-
Tadesse, M.G.1
Sha, N.2
Vannucci, M.3
-
44
-
-
33750021210
-
Evaluation and comparison of gene clustering methods in microarray analysis
-
Thalamuthu A., Mukhopadhyay I., Zheng X. and Tseng G.C. (2006). Evaluation and comparison of gene clustering methods in microarray analysis. Bioinformatics, 22, 2405-2412.
-
(2006)
Bioinformatics
, vol.22
, pp. 2405-2412
-
-
Thalamuthu, A.1
Mukhopadhyay, I.2
Zheng, X.3
Tseng, G.C.4
-
45
-
-
26444608611
-
Discovering statistically significant pathways in expression profiling studies
-
Tian L, Greenberg SA, Kong SW, Altschuler J, Kohane IS, Park PJ. (2005). Discovering statistically significant pathways in expression profiling studies. PNAS 102, 13544-13549.
-
(2005)
PNAS
, vol.102
, pp. 13544-13549
-
-
Tian, L.1
Greenberg, S.A.2
Kong, S.W.3
Altschuler, J.4
Kohane, I.S.5
Park, P.J.6
-
46
-
-
85194972808
-
Regression shrinkage and selection via the lasso
-
Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. JRSS-B, 58, 267-288.
-
(1996)
JRSS-B
, vol.58
, pp. 267-288
-
-
Tibshirani, R.1
-
47
-
-
2342533421
-
Class prediction by nearest shrunken centroids, with application to DNA microarrays
-
Tibshirani R, Hastie T, Narasimhan B, Chu G. (2003). Class prediction by nearest shrunken centroids, with application to DNA microarrays. Statistical Science 18, 104-117.
-
(2003)
Statistical Science
, vol.18
, pp. 104-117
-
-
Tibshirani, R.1
Hastie, T.2
Narasimhan, B.3
Chu, G.4
-
48
-
-
0025950015
-
Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia
-
Tycko, B., Smith, S.D. and Sklar, J. (1991). Chromosomal translocations joining LCK and TCRB loci in human T cell leukemia. Journal of Experimental Medicine, 174, 867-873.
-
(1991)
Journal of Experimental Medicine
, vol.174
, pp. 867-873
-
-
Tycko, B.1
Smith, S.D.2
Sklar, J.3
-
49
-
-
12444320350
-
Gene selection from microarray data for cancer classification -a machine learning approach
-
Wang Y, Tetko IV, Hall MA, Frank E, Facius A, Mayer KFX, Mewes HW. (2005). Gene selection from microarray data for cancer classification -a machine learning approach. Comput Biol Chem, 29, 37-46.
-
(2005)
Comput Biol Chem
, vol.29
, pp. 37-46
-
-
Wang, Y.1
Tetko, I.V.2
Hall, M.A.3
Frank, E.4
Facius, A.5
Mayer, K.6
Mewes, H.W.7
-
51
-
-
0028353897
-
Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human T-cell leukemia
-
Wright, D.D., Sefton, B.M. and Kamps, M.P. (1994). Oncogenic activation of the Lck protein accompanies translocation of the LCK gene in the human T-cell leukemia. Mol Cell Biol., 14, 2429-2437.
-
(1994)
Mol Cell Biol.
, vol.14
, pp. 2429-2437
-
-
Wright, D.D.1
Sefton, B.M.2
Kamps, M.P.3
-
52
-
-
85153175205
-
-
To appear in Biometrics. Available at, as Research Report 2007-018, Division of Biostatistics, University of Minnesota
-
Xie, B, Pan, W. and Shen, X. (2008). Variable selection in penalized model-based clustering via regularization on grouped parameters. To appear in Biometrics. Available at http://www.biostat.umn.edu./rrs.php as Research Report 2007-018, Division of Biostatistics, University of Minnesota.
-
(2008)
Variable Selection in Penalized Model-Based Clustering via Regularization on Grouped Parameters
-
-
Xie, B.1
Pan, W.2
Shen, X.3
-
53
-
-
0034782618
-
Model-based clustering and data transformations for gene expression data
-
Yeung KY, Fraley C, Murua A, Raftery AE, Ruzzo WL. (2001). Model-based clustering and data transformations for gene expression data. Bioinformatics 17, 977-987.
-
(2001)
Bioinformatics
, vol.17
, pp. 977-987
-
-
Yeung, K.Y.1
Fraley, C.2
Murua, A.3
Raftery, A.E.4
Ruzzo, W.L.5
-
54
-
-
33645035051
-
Model selection and estimation in regression with grouped variables
-
Yuan, M. and Lin, Y. (2006). Model selection and estimation in regression with grouped variables. JRSS-B, 68, 49-67.
-
(2006)
JRSS-B
, vol.68
, pp. 49-67
-
-
Yuan, M.1
Lin, Y.2
-
55
-
-
33947115409
-
Model selection and estimation in the 2 Gaussian graphical model
-
Yuan, M. and Lin, Y. (2007), Model selection and estimation in the 2 Gaussian graphical model. Biometrika, 94, 19-35.
-
(2007)
Biometrika
, vol.94
, pp. 19-35
-
-
Yuan, M.1
Lin, Y.2
-
56
-
-
34447335946
-
-
Technical Report, Dept of Statistics, UC-Berkeley
-
Zhao, P., Rocha, G., Yu, B. (2006). Grouped and hierarchical model selection through composite absolute penalties. Technical Report, Dept of Statistics, UC-Berkeley.
-
(2006)
Grouped and Hierarchical Model Selection through Composite Absolute Penalties
-
-
Zhao, P.1
Rocha, G.2
Yu, B.3
-
57
-
-
33846114377
-
The Adaptive Lasso and Its Oracle Properties
-
Zou, H. (2006). The Adaptive Lasso and Its Oracle Properties. JASA, 101, 1418-1429.
-
(2006)
JASA
, vol.101
, pp. 1418-1429
-
-
Zou, H.1
-
58
-
-
16244401458
-
Regularization and variable selection via the elastic net
-
Zou, H. and Hastie, T. (2005). Regularization and variable selection via the elastic net. Journal of the Royal Statistical Society B, 67, 301-320.
-
(2005)
Journal of the Royal Statistical Society B
, vol.67
, pp. 301-320
-
-
Zou, H.1
Hastie, T.2
-
59
-
-
85035264284
-
On the “Degrees of Freedom” of the Lasso
-
Zou H, Hastie T, Tibshirani R. (2004). On the “Degrees of Freedom” of the Lasso. To appear Ann. Statistics. Available at http://stat.stanford.edu/˜hastie/pub.htm.
-
(2004)
Ann. Statistics
-
-
Zou, H.1
Hastie, T.2
Tibshirani, R.3
|