|
Volumn 64, Issue 2, 2008, Pages 440-448
|
Variable selection for model-based high-dimensional clustering and its application to microarray data
|
Author keywords
EM algorithm; High dimension low sample size; Microarray; Model based clustering; Regularization; Variable selection
|
Indexed keywords
CLUSTERING ALGORITHMS;
EM ALGORITHMS;
HIGH-DIMENSION LOW SAMPLE SIZE;
HIGH-DIMENSIONAL CLUSTERING;
HIGHER DIMENSIONS;
L 1 NORM;
MODEL-BASED CLUSTERING;
MODEL-BASED OPC;
REGULARISATION;
SAMPLE SIZES;
VARIABLES SELECTIONS;
NUMERICAL METHODS;
ARRAY;
CLUSTER ANALYSIS;
MODELING;
ACUTE GRANULOCYTIC LEUKEMIA;
ACUTE LYMPHOBLASTIC LEUKEMIA;
ALGORITHM;
ARTICLE;
BURKITT LYMPHOMA;
CHILDHOOD CANCER;
CLUSTER ANALYSIS;
CONTROLLED STUDY;
DATA ANALYSIS;
EWING SARCOMA;
HUMAN;
INTERMETHOD COMPARISON;
MICROARRAY ANALYSIS;
NEUROBLASTOMA;
NORMAL DISTRIBUTION;
QUANTITATIVE ANALYSIS;
RHABDOMYOSARCOMA;
SIMULATION;
STATISTICAL MODEL;
STATISTICAL PARAMETERS;
|
EID: 43749096785
PISSN: 0006341X
EISSN: 15410420
Source Type: Journal
DOI: 10.1111/j.1541-0420.2007.00922.x Document Type: Article |
Times cited : (132)
|
References (27)
|