|
Volumn 31, Issue 15, 2006, Pages 2524-2533
|
Artificial neural networks used for the prediction of the cetane number of biodiesel
|
Author keywords
Artificial neural networks; Biodiesel; Cetane number
|
Indexed keywords
ANTIKNOCK RATING;
COMPOSITION;
IGNITION;
INTERNAL COMBUSTION ENGINES;
MATHEMATICAL MODELS;
NEURAL NETWORKS;
BIODIESEL;
ESTIMATION TECHNIQUES;
GENERALIZED REGRESSION;
MULTI-LAYER FEED FORWARD;
SYNTHETIC FUELS;
ANTIKNOCK RATING;
COMPOSITION;
IGNITION;
INTERNAL COMBUSTION ENGINES;
MATHEMATICAL MODELS;
NEURAL NETWORKS;
SYNTHETIC FUELS;
BIOFUEL;
ENGINE;
FATTY ACID;
INFORMATION PROCESSING;
PERFORMANCE ASSESSMENT;
PREDICTION;
|
EID: 33747178177
PISSN: 09601481
EISSN: None
Source Type: Journal
DOI: 10.1016/j.renene.2006.01.009 Document Type: Article |
Times cited : (138)
|
References (15)
|