메뉴 건너뛰기




Volumn 51, Issue 8, 2007, Pages 3631-3653

Computational techniques for spatial logistic regression with large data sets

Author keywords

Bayesian statistics; Disease mapping; Fourier basis; Generalized linear mixed model; Geostatistics; Risk surface; Spatial statistics; Spectral basis

Indexed keywords

BAYESIAN NETWORKS; COMPUTATIONAL MECHANICS; DATA STRUCTURES; RISK ANALYSIS; SPECTRUM ANALYSIS; STATISTICAL METHODS;

EID: 33947661458     PISSN: 01679473     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.csda.2006.11.008     Document Type: Article
Times cited : (55)

References (79)
  • 1
    • 84916537550 scopus 로고
    • Bayesian analysis of binary and polychotomous response data
    • Albert J.H., and Chib S. Bayesian analysis of binary and polychotomous response data. J. Amer. Statist. Assoc. 88 (1993) 669-679
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 669-679
    • Albert, J.H.1    Chib, S.2
  • 3
    • 33845631415 scopus 로고    scopus 로고
    • Bayesian models for spatially correlated disease and exposure data
    • Bernardo J., Berger J., Dawid A., and Smith A. (Eds), Oxford University Press, Oxford, UK
    • Best N., Arnold R., Thomas A., Waller L., and Conlon E. Bayesian models for spatially correlated disease and exposure data. In: Bernardo J., Berger J., Dawid A., and Smith A. (Eds). Bayesian Statistics vol. 6 (1999), Oxford University Press, Oxford, UK 131-156
    • (1999) Bayesian Statistics , vol.6 , pp. 131-156
    • Best, N.1    Arnold, R.2    Thomas, A.3    Waller, L.4    Conlon, E.5
  • 4
    • 0442293860 scopus 로고    scopus 로고
    • Spatial Poisson regression for health and exposure data measured at disparate resolutions
    • Best N., Ickstadt K., and Wolpert R.L. Spatial Poisson regression for health and exposure data measured at disparate resolutions. J. Amer. Statist. Assoc. 95 (2000) 1076-1088
    • (2000) J. Amer. Statist. Assoc. , vol.95 , pp. 1076-1088
    • Best, N.1    Ickstadt, K.2    Wolpert, R.L.3
  • 5
    • 0033475053 scopus 로고    scopus 로고
    • Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm
    • Booth J.G., and Hobert J.P. Maximizing generalized linear mixed model likelihoods with an automated Monte Carlo EM algorithm. J. Roy. Statist. Soc. Ser. B 61 (1999) 265-285
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.61 , pp. 265-285
    • Booth, J.G.1    Hobert, J.P.2
  • 6
    • 0007583320 scopus 로고
    • Three-dimensional, frequency-domain simulations of geological variables
    • Verly G., et al. (Ed), Reidel, Dordrecht
    • Borgman L., Taheri M., and Hagan R. Three-dimensional, frequency-domain simulations of geological variables. In: Verly G., et al. (Ed). Geostatistics for Natural Resources Characterization, Part 1. D (1984), Reidel, Dordrecht 517-541
    • (1984) Geostatistics for Natural Resources Characterization, Part 1. D , pp. 517-541
    • Borgman, L.1    Taheri, M.2    Hagan, R.3
  • 7
    • 33947664368 scopus 로고    scopus 로고
    • Breslow, N., 2003. Whither PQL? Technical Report 192, Department of Biostatistics, University of Washington.
  • 8
    • 0011241944 scopus 로고
    • Approximate inference in generalized linear mixed models
    • Breslow N.E., and Clayton D.G. Approximate inference in generalized linear mixed models. J. Amer. Statist. Assoc. 88 (1993) 9-25
    • (1993) J. Amer. Statist. Assoc. , vol.88 , pp. 9-25
    • Breslow, N.E.1    Clayton, D.G.2
  • 9
    • 0032356568 scopus 로고    scopus 로고
    • Smoothing spline models for the analysis of nested and crossed samples of curves (C/R: p976-994)
    • Brumback B.A., and Rice J.A. Smoothing spline models for the analysis of nested and crossed samples of curves (C/R: p976-994). J. Amer. Statist. Assoc. 93 (1998) 961-976
    • (1998) J. Amer. Statist. Assoc. , vol.93 , pp. 961-976
    • Brumback, B.A.1    Rice, J.A.2
  • 12
    • 4344657015 scopus 로고    scopus 로고
    • Monte Carlo maximum likelihood in model-based geostatistics
    • Christensen O. Monte Carlo maximum likelihood in model-based geostatistics. J. Comput. Graph. Statist. 13 (2004) 702-718
    • (2004) J. Comput. Graph. Statist. , vol.13 , pp. 702-718
    • Christensen, O.1
  • 13
    • 33947661822 scopus 로고    scopus 로고
    • Christensen, O., Møller, J., Waagepetersen, R., 2000. Analysis of spatial data using generalized linear mixed models and Langevin-type Markov chain Monte Carlo. Technical Report R-002009, Department of Mathematics, Aalborg University. 〈URL:www.math.auc.dk/∼rw/publications.html〉.
  • 14
    • 33645558077 scopus 로고    scopus 로고
    • Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models
    • Christensen O., Roberts G., and Sköld M. Robust Markov chain Monte Carlo methods for spatial generalized linear mixed models. J. Comput. Graph. Statist. 15 (2006) 1-17
    • (2006) J. Comput. Graph. Statist. , vol.15 , pp. 1-17
    • Christensen, O.1    Roberts, G.2    Sköld, M.3
  • 15
    • 0035989805 scopus 로고    scopus 로고
    • Bayesian prediction of spatial count data using generalized linear mixed models
    • Christensen O.F., and Waagepetersen R. Bayesian prediction of spatial count data using generalized linear mixed models. Biometrics 58 (2002) 280-286
    • (2002) Biometrics , vol.58 , pp. 280-286
    • Christensen, O.F.1    Waagepetersen, R.2
  • 16
    • 0030539336 scopus 로고    scopus 로고
    • Markov chain Monte Carlo convergence diagnostics: a comparative review
    • Cowles M.K., and Carlin B.P. Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Amer. Statist. Assoc. 91 (1996) 883-904
    • (1996) J. Amer. Statist. Assoc. , vol.91 , pp. 883-904
    • Cowles, M.K.1    Carlin, B.P.2
  • 20
    • 0000667309 scopus 로고
    • A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point
    • Diggle P.J. A point process modelling approach to raised incidence of a rare phenomenon in the vicinity of a prespecified point. J. Roy. Statist. Soc. Ser. A 153 (1990) 349-362
    • (1990) J. Roy. Statist. Soc. Ser. A , vol.153 , pp. 349-362
    • Diggle, P.J.1
  • 22
    • 33947684748 scopus 로고    scopus 로고
    • Draper, D., Krnjacic, M., 2006. Bayesian model specification. Technical Report, Department of Applied Mathematics and Statistics, University of California Santa Cruz.
  • 24
    • 33947699760 scopus 로고    scopus 로고
    • Elliott, P., Wakefield, J., Best, N., Briggs, D., 2000. Spatial epidemiology: methods and applications. In: Elliott, P., Wakefield, J., Best, N., Briggs, D. (Eds.), Spatial Epidemiology: Methods and Applications. Oxford University Press, Oxford, pp. 3-14.
  • 25
    • 0035649015 scopus 로고    scopus 로고
    • Bayesian inference for generalized additive mixed models based on Markov random field priors
    • Fahrmeir L., and Lang S. Bayesian inference for generalized additive mixed models based on Markov random field priors. J. Roy. Statist. Soc. C 50 (2001) 201-220
    • (2001) J. Roy. Statist. Soc. C , vol.50 , pp. 201-220
    • Fahrmeir, L.1    Lang, S.2
  • 26
    • 0042042167 scopus 로고    scopus 로고
    • Sampling from the posterior distribution in generalized linear mixed models
    • Gamerman D. Sampling from the posterior distribution in generalized linear mixed models. Statist. Comput. 7 (1997) 57-68
    • (1997) Statist. Comput. , vol.7 , pp. 57-68
    • Gamerman, D.1
  • 27
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper)
    • Gelman A. Prior distributions for variance parameters in hierarchical models (comment on article by Browne and Draper). Bayesian Anal. 1 3 (2006) 515-534
    • (2006) Bayesian Anal. , vol.1 , Issue.3 , pp. 515-534
    • Gelman, A.1
  • 28
    • 0031467709 scopus 로고    scopus 로고
    • Random effects probit and logistic regression models for three-level data
    • Gibbons R.D., and Hedeker D. Random effects probit and logistic regression models for three-level data. Biometrics 53 (1997) 1527-1537
    • (1997) Biometrics , vol.53 , pp. 1527-1537
    • Gibbons, R.D.1    Hedeker, D.2
  • 29
    • 0004123838 scopus 로고    scopus 로고
    • Least absolute shrinkage is equivalent to quadratic penalization
    • Springer, Berlin
    • Grandvalet Y. Least absolute shrinkage is equivalent to quadratic penalization. ICANN'98 Perspectives in Neural Computing (1998), Springer, Berlin 201-206
    • (1998) ICANN'98 Perspectives in Neural Computing , pp. 201-206
    • Grandvalet, Y.1
  • 30
    • 77956889087 scopus 로고
    • Reversible jump Markov chain Monte Carlo computation and Bayesian model determination
    • Green P. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination. Biometrika 82 (1995) 711-732
    • (1995) Biometrika , vol.82 , pp. 711-732
    • Green, P.1
  • 31
    • 0026632529 scopus 로고
    • Divergent biases in ecologic and individual-level studies
    • Greenland S. Divergent biases in ecologic and individual-level studies. Statist. Med. 11 (1992) 1209-1223
    • (1992) Statist. Med. , vol.11 , pp. 1209-1223
    • Greenland, S.1
  • 33
    • 0028650772 scopus 로고
    • A random-effects ordinal regression model for multilevel analysis
    • Hedeker D., and Gibbons R.D. A random-effects ordinal regression model for multilevel analysis. Biometrics 50 (1994) 933-944
    • (1994) Biometrics , vol.50 , pp. 933-944
    • Hedeker, D.1    Gibbons, R.D.2
  • 34
    • 0032422974 scopus 로고    scopus 로고
    • A process-convolution approach to modeling temperatures in the North Atlantic Ocean
    • Higdon D. A process-convolution approach to modeling temperatures in the North Atlantic Ocean. J. Environmental and Ecological Statist. 5 (1998) 173-190
    • (1998) J. Environmental and Ecological Statist. , vol.5 , pp. 173-190
    • Higdon, D.1
  • 35
    • 33947635456 scopus 로고    scopus 로고
    • Hobert, J., Wand, M., 2000. Automatic generalized nonparametric regression via maximum likelihood. Technical Report, Department of Biostatistics, Harvard School of Public Health. 〈URL:citeseer.ist.psu.edu/hobert00automatic.html〉.
  • 36
    • 0041743086 scopus 로고    scopus 로고
    • Generalized nonlinear modeling with multivariate free-knot regression splines
    • Holmes C., and Mallick B. Generalized nonlinear modeling with multivariate free-knot regression splines. J. Amer. Statist. Assoc. 98 (2003) 352-368
    • (2003) J. Amer. Statist. Assoc. , vol.98 , pp. 352-368
    • Holmes, C.1    Mallick, B.2
  • 38
    • 0036921398 scopus 로고    scopus 로고
    • Estimation of spatial variation in risk using matched case-control data
    • Jarner M.F., Diggle P., and Chetwynd A.G. Estimation of spatial variation in risk using matched case-control data. Biometrical J. 44 8 (2002) 936-945
    • (2002) Biometrical J. , vol.44 , Issue.8 , pp. 936-945
    • Jarner, M.F.1    Diggle, P.2    Chetwynd, A.G.3
  • 41
    • 0039986416 scopus 로고    scopus 로고
    • Spatial variation in risk of disease: a nonparametric binary regression approach
    • Kelsall J.E., and Diggle P.J. Spatial variation in risk of disease: a nonparametric binary regression approach. J. Roy. Statist. Soc. Ser. C 47 (1998) 559-573
    • (1998) J. Roy. Statist. Soc. Ser. C , vol.47 , pp. 559-573
    • Kelsall, J.E.1    Diggle, P.J.2
  • 42
    • 0036900109 scopus 로고    scopus 로고
    • On block updating in Markov random field models for disease mapping
    • Knorr-Held L., and Rue H. On block updating in Markov random field models for disease mapping. Scand. J. Statist. 29 4 (2002) 597-614
    • (2002) Scand. J. Statist. , vol.29 , Issue.4 , pp. 597-614
    • Knorr-Held, L.1    Rue, H.2
  • 43
    • 0027868652 scopus 로고
    • On the analysis of mortality events associated with a prespecified fixed point
    • Lawson A.B. On the analysis of mortality events associated with a prespecified fixed point. J. Roy. Statist. Soc. Ser. A 156 (1993) 363-377
    • (1993) J. Roy. Statist. Soc. Ser. A , vol.156 , pp. 363-377
    • Lawson, A.B.1
  • 45
    • 0033475174 scopus 로고    scopus 로고
    • Bayesian inference for semiparametric regression using a Fourier representation
    • Lenk P.J. Bayesian inference for semiparametric regression using a Fourier representation. J. Roy. Statist. Soc. Ser. B 61 (1999) 863-879
    • (1999) J. Roy. Statist. Soc. Ser. B , vol.61 , pp. 863-879
    • Lenk, P.J.1
  • 46
    • 0035989798 scopus 로고    scopus 로고
    • Modeling spatial survival data using semi-parametric frailty models
    • Li Y., and Ryan L. Modeling spatial survival data using semi-parametric frailty models. Biometrics 58 (2002) 287-297
    • (2002) Biometrics , vol.58 , pp. 287-297
    • Li, Y.1    Ryan, L.2
  • 47
    • 21344497135 scopus 로고
    • Maximum likelihood variance components estimation for binary data
    • McCulloch C.E. Maximum likelihood variance components estimation for binary data. J. Amer. Statist. Assoc. 89 (1994) 330-335
    • (1994) J. Amer. Statist. Assoc. , vol.89 , pp. 330-335
    • McCulloch, C.E.1
  • 48
    • 0031479575 scopus 로고    scopus 로고
    • Maximum likelihood algorithms for generalized linear mixed models
    • McCulloch C.E. Maximum likelihood algorithms for generalized linear mixed models. J. Amer. Statist. Assoc. 92 (1997) 162-170
    • (1997) J. Amer. Statist. Assoc. , vol.92 , pp. 162-170
    • McCulloch, C.E.1
  • 49
    • 0007224920 scopus 로고    scopus 로고
    • Assessment of disease risk in relation to a pre-specified source
    • Elliott P., Wakefield J., Best N., and Briggs D. (Eds), Oxford University Press, Oxford
    • Morris S., and Wakefield J. Assessment of disease risk in relation to a pre-specified source. In: Elliott P., Wakefield J., Best N., and Briggs D. (Eds). Spatial Epidemiology: Methods and Applications (2000), Oxford University Press, Oxford 153-184
    • (2000) Spatial Epidemiology: Methods and Applications , pp. 153-184
    • Morris, S.1    Wakefield, J.2
  • 50
    • 33947691130 scopus 로고    scopus 로고
    • Neal, R., 1993. Probabilistic inference using Markov chain Monte Carlo methods. Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto. 〈URL:www.cs.toronto.edu/~radford/papers-online.html〉.
  • 52
    • 4544224992 scopus 로고    scopus 로고
    • Smoothing with mixed model software
    • Ngo L., and Wand M. Smoothing with mixed model software. J. Statist. Software 9 (2004)
    • (2004) J. Statist. Software , vol.9
    • Ngo, L.1    Wand, M.2
  • 54
    • 0031497541 scopus 로고    scopus 로고
    • Spatial regression models, response surfaces, and process optimization
    • O'Connell M., and Wolfinger R. Spatial regression models, response surfaces, and process optimization. J. Comput. Graph. Statist. 6 (1997) 224-241
    • (1997) J. Comput. Graph. Statist. , vol.6 , pp. 224-241
    • O'Connell, M.1    Wolfinger, R.2
  • 55
    • 33947682630 scopus 로고    scopus 로고
    • Paciorek, C., 2003. Nonstationary Gaussian processes for regression and spatial modelling. Ph.D. Thesis, Carnegie Mellon University, Pittsburgh, PA.
  • 56
    • 33947626483 scopus 로고    scopus 로고
    • Paciorek, C., 2006. Bayesian smoothing of irregularly-spaced data using Fourier basis functions. Technical Report 49, Harvard University Biostatistics.
  • 57
    • 0027933413 scopus 로고
    • Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan
    • Pan B., Hong Y., Chang G., Wang M., Cinkotai F., and Ko Y. Excess cancer mortality among children and adolescents in residential districts polluted by petrochemical manufacturing plants in Taiwan. J. Toxicol. Environ. Health 43 (1994) 117-129
    • (1994) J. Toxicol. Environ. Health , vol.43 , pp. 117-129
    • Pan, B.1    Hong, Y.2    Chang, G.3    Wang, M.4    Cinkotai, F.5    Ko, Y.6
  • 58
    • 0018671320 scopus 로고
    • Logistic disease incidence models and case-control studies
    • Prentice R.L., and Pyke R. Logistic disease incidence models and case-control studies. Biometrika 66 (1979) 403-412
    • (1979) Biometrika , vol.66 , pp. 403-412
    • Prentice, R.L.1    Pyke, R.2
  • 59
    • 84896062664 scopus 로고    scopus 로고
    • Infinite mixtures of Gaussian process experts
    • Dietterich T.G., Becker S., and Ghahramani Z. (Eds), MIT Press, Cambridge, MA
    • Rasmussen C.E., and Ghahramani Z. Infinite mixtures of Gaussian process experts. In: Dietterich T.G., Becker S., and Ghahramani Z. (Eds). Advances in Neural Information Processing Systems vol. 14 (2002), MIT Press, Cambridge, MA
    • (2002) Advances in Neural Information Processing Systems , vol.14
    • Rasmussen, C.E.1    Ghahramani, Z.2
  • 60
    • 0000725750 scopus 로고
    • Statistical methods for geographic correlation studies
    • Elliott P., Cuzick J., English D., and Stern R. (Eds), Oxford University Press, Oxford
    • Richardson S. Statistical methods for geographic correlation studies. In: Elliott P., Cuzick J., English D., and Stern R. (Eds). Geographical and Environmental Epidemiology: Methods for Small-area Studies (1992), Oxford University Press, Oxford 181-204
    • (1992) Geographical and Environmental Epidemiology: Methods for Small-area Studies , pp. 181-204
    • Richardson, S.1
  • 61
    • 20344397922 scopus 로고    scopus 로고
    • Efficient statistical mapping of avian count data
    • Royle J.A., and Wikle C.K. Efficient statistical mapping of avian count data. Environ. Ecol. Statist. 12 2 (2005) 225-243
    • (2005) Environ. Ecol. Statist. , vol.12 , Issue.2 , pp. 225-243
    • Royle, J.A.1    Wikle, C.K.2
  • 63
    • 33947691520 scopus 로고    scopus 로고
    • Rue, H., Martino, S., 2006. Approximate Bayesian inference for hierarchical Gaussian Markov random fields. Technical Report, Department of Mathematical Sciences, Norwegian University of Science and Technology. 〈 URL:http://www.math.ntnu.no/∼hrue/reports/index.imf〉.
  • 64
    • 0036522614 scopus 로고    scopus 로고
    • Fitting Gaussian Markov random fields to Gaussian fields
    • Rue H., and Tjelmeland H. Fitting Gaussian Markov random fields to Gaussian fields. Scand. J. Statist. 29 1 (2002) 31-49
    • (2002) Scand. J. Statist. , vol.29 , Issue.1 , pp. 31-49
    • Rue, H.1    Tjelmeland, H.2
  • 65
    • 8644271571 scopus 로고    scopus 로고
    • Approximating hidden Gaussian Markov random fields
    • Rue H., Steinsland I., and Erland S. Approximating hidden Gaussian Markov random fields. J. Roy. Statist. Soc. Ser. B 66 4 (2004) 877-892
    • (2004) J. Roy. Statist. Soc. Ser. B , vol.66 , Issue.4 , pp. 877-892
    • Rue, H.1    Steinsland, I.2    Erland, S.3
  • 68
    • 2442455496 scopus 로고    scopus 로고
    • Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging
    • Wager C.G., Coull B.A., and Lange N. Modelling spatial intensity for replicated inhomogeneous point patterns in brain imaging. J. Roy. Statist. Soc. Ser. B 66 (2004) 429-446
    • (2004) J. Roy. Statist. Soc. Ser. B , vol.66 , pp. 429-446
    • Wager, C.G.1    Coull, B.A.2    Lange, N.3
  • 69
    • 0041865172 scopus 로고
    • Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy
    • Wahba G., Wang Y., Gu C., Klein R., and Klein B. Smoothing spline ANOVA for exponential families, with application to the Wisconsin epidemiological study of diabetic retinopathy. Ann. Statist. 23 (1995) 1865-1895
    • (1995) Ann. Statist. , vol.23 , pp. 1865-1895
    • Wahba, G.1    Wang, Y.2    Gu, C.3    Klein, R.4    Klein, B.5
  • 71
    • 84977786486 scopus 로고    scopus 로고
    • Spatial modeling of count data: a case study in modelling breeding bird survey data on large spatial domains
    • Lawson A., and Denison D. (Eds), Chapman & Hall, London
    • Wikle C. Spatial modeling of count data: a case study in modelling breeding bird survey data on large spatial domains. In: Lawson A., and Denison D. (Eds). Spatial Cluster Modelling (2002), Chapman & Hall, London 199-209
    • (2002) Spatial Cluster Modelling , pp. 199-209
    • Wikle, C.1
  • 72
    • 84949346776 scopus 로고
    • Generalized linear mixed models: a pseudo-likelihood approach
    • Wolfinger R., and O'Connell M. Generalized linear mixed models: a pseudo-likelihood approach. J. Statist. Comput. Simulation 48 (1993) 233-243
    • (1993) J. Statist. Comput. Simulation , vol.48 , pp. 233-243
    • Wolfinger, R.1    O'Connell, M.2
  • 74
    • 13844262338 scopus 로고    scopus 로고
    • Bayesian mixture of splines for spatially adaptive nonparametric regression
    • Wood S., Jiang W., and Tanner M. Bayesian mixture of splines for spatially adaptive nonparametric regression. Biometrika 89 (2002) 513-528
    • (2002) Biometrika , vol.89 , pp. 513-528
    • Wood, S.1    Jiang, W.2    Tanner, M.3
  • 75
    • 0034364945 scopus 로고    scopus 로고
    • Modelling and smoothing parameter estimation with multiple quadratic penalties
    • Wood S.N. Modelling and smoothing parameter estimation with multiple quadratic penalties. J. Roy. Statist. Soc. Ser. B 62 2 (2000) 413-428
    • (2000) J. Roy. Statist. Soc. Ser. B , vol.62 , Issue.2 , pp. 413-428
    • Wood, S.N.1
  • 76
    • 0141576514 scopus 로고    scopus 로고
    • Thin plate regression splines
    • Wood S.N. Thin plate regression splines. J. Roy. Statist. Soc. Ser. B 65 1 (2003) 95-114
    • (2003) J. Roy. Statist. Soc. Ser. B , vol.65 , Issue.1 , pp. 95-114
    • Wood, S.N.1
  • 77
    • 4944226585 scopus 로고    scopus 로고
    • Stable and efficient multiple smoothing parameter estimation for generalized additive models
    • Wood S.N. Stable and efficient multiple smoothing parameter estimation for generalized additive models. J. Amer. Statist. Assoc. 99 (2004) 673-686
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 673-686
    • Wood, S.N.1
  • 78
    • 2142734871 scopus 로고    scopus 로고
    • Inconsistent estimation and asymptotically equal interpolation in model-based geostatistics
    • Zhang H. Inconsistent estimation and asymptotically equal interpolation in model-based geostatistics. J. Amer. Statist. Assoc. 99 (2004) 250-261
    • (2004) J. Amer. Statist. Assoc. , vol.99 , pp. 250-261
    • Zhang, H.1
  • 79
    • 33947700253 scopus 로고    scopus 로고
    • Zhao, Y., 2003. General design Bayesian generalized linear mixed models with applications to spatial statistics. Ph.D. Thesis, Havard University Department of Biostatistics, Boston, MA.


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.