메뉴 건너뛰기




Volumn 22, Issue 6, 2010, Pages 1646-1673

Independent vector analysis for source separation using a mixture of gaussians prior

Author keywords

[No Author keywords available]

Indexed keywords

ALGORITHM; ARTICLE; ARTIFACT; ARTIFICIAL INTELLIGENCE; ARTIFICIAL NEURAL NETWORK; AUTOMATED PATTERN RECOGNITION; COMPUTER SIMULATION; MATHEMATICAL PHENOMENA; METHODOLOGY; NORMAL DISTRIBUTION; PATTERN RECOGNITION; PHYSIOLOGY; SIGNAL PROCESSING; SPEECH PERCEPTION;

EID: 77953521861     PISSN: 08997667     EISSN: 1530888X     Source Type: Journal    
DOI: 10.1162/neco.2010.11-08-906     Document Type: Article
Times cited : (27)

References (32)
  • 1
    • 0018455820 scopus 로고
    • Image method for efficiently simulating small room acoustics
    • Allen, J. B., & Berkley, D. A. (1979). Image method for efficiently simulating small room acoustics. J. Acoust. Soc. Amer., 65, 943-950.
    • (1979) J. Acoust. Soc. Amer. , vol.65 , pp. 943-950
    • Allen, J.B.1    Berkley, D.A.2
  • 2
    • 0033561886 scopus 로고    scopus 로고
    • Independent factor analysis
    • Attias, H. (1999). Independent factor analysis. Neural Computation, 11(5), 803-851.
    • (1999) Neural Computation , vol.11 , Issue.5 , pp. 803-851
    • Attias, H.1
  • 3
    • 84977901887 scopus 로고    scopus 로고
    • A newmethod for speech denoising and robust speech recognition using probabilistic models for clean speech and for noise
    • Attias, H., Deng, L., Acero, A., & Platt, J. (2001). A newmethod for speech denoising and robust speech recognition using probabilistic models for clean speech and for noise. In Proc. Eurospeech (Vol. 3, pp. 1903-1906).
    • (2001) Proc. Eurospeech , vol.3 , pp. 1903-1906
    • Attias, H.1    Deng, L.2    Acero, A.3    Platt, J.4
  • 4
    • 0009589653 scopus 로고    scopus 로고
    • Speech denoising and dereverberation using probabilistic models
    • T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Cambridge, MA: MIT Press
    • Attias,H., Platt, J. C., Acero, A., & Deng, L. (2000). Speech denoising and dereverberation using probabilistic models. In T. K. Leen, T. G. Dietterich, & V. Tresp (Eds.), Advances in neural information processing systems, 13 (pp. 758-764). Cambridge, MA: MIT Press.
    • (2000) Advances in neural information processing systems , vol.13 , pp. 758-764
    • Attias, H.1    Platt, J.C.2    Acero, A.3    Deng, L.4
  • 6
    • 0029411030 scopus 로고
    • An information maximization approach to blind separation and blind deconvolution
    • Bell, A. J., & Sejnowski, T. J. (1995). An information maximization approach to blind separation and blind deconvolution. Neural Computation, 7(6), 1129-1159.
    • (1995) Neural Computation , vol.7 , Issue.6 , pp. 1129-1159
    • Bell, A.J.1    Sejnowski, T.J.2
  • 8
    • 1242286406 scopus 로고    scopus 로고
    • Independent component analysis based on nonparametric density estimation
    • Boscolo, R., Pan,H.,&Roychowdhury, V. P. (2004). Independent component analysis based on nonparametric density estimation. IEEE Trans. on Neural Networks, 15(1), 55-65.
    • (2004) IEEE Trans. on Neural Networks , vol.15 , Issue.1 , pp. 55-65
    • Boscolo, R.1    Pan, H.2    Roychowdhury, V.P.3
  • 9
    • 0032612381 scopus 로고    scopus 로고
    • High-order contrasts for independent component analysis
    • Cardoso, J.-F. (1999). High-order contrasts for independent component analysis. Neural Computation, 11(1), 157-192.
    • (1999) Neural Computation , vol.11 , Issue.1 , pp. 157-192
    • Cardoso, J.-F.1
  • 10
    • 0028416938 scopus 로고
    • Independent component analysis, a new concept?
    • Comon, P. (1994). Independent component analysis, a new concept? Signal Processing, 36(3), 287-314.
    • (1994) Signal Processing , vol.36 , Issue.3 , pp. 287-314
    • Comon, P.1
  • 11
    • 51449123884 scopus 로고    scopus 로고
    • Recent advancements in speech enhancement
    • R. C. Dorf (Ed.), Boca Raton, FL: CRC Press
    • Ephraim, Y., & Cohen, I. (2006). Recent advancements in speech enhancement. In R. C. Dorf (Ed.), The electrical engineering handbook. Boca Raton, FL: CRC Press.
    • (2006) The electrical engineering handbook
    • Ephraim, Y.1    Cohen, I.2
  • 13
    • 0032629347 scopus 로고    scopus 로고
    • Fast and robust fixed-point algorithms for independent component analysis
    • Hyvärinen, A. (1999). Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. on Neural Networks, 10(3), 626-634.
    • (1999) IEEE Trans. on Neural Networks , vol.10 , Issue.3 , pp. 626-634
    • Hyvärinen, A.1
  • 14
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces
    • Hyvärinen, A., & Hoyer, P. O. (2000). Emergence of phase- and shift-invariant features by decomposition of natural images into independent feature subspaces. Neural Computation, 12(7), 1705-1720.
    • (2000) Neural Computation , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.O.2
  • 15
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • Hyvärinen, A., Hoyer, P. O., & Inki,M. (2001). Topographic independent component analysis. Neural Computation, 13(7), 1527-1558.
    • (2001) Neural Computation , vol.13 , Issue.7 , pp. 1527-1558
    • Hyvärinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 17
    • 0346307721 scopus 로고    scopus 로고
    • A fast fixed-point algorithm for independent component analysis
    • Hyvärinen, A., & Oja, E. (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9(7), 1483-1492.
    • (1997) Neural Computation , vol.9 , Issue.7 , pp. 1483-1492
    • Hyvärinen, A.1    Oja, E.2
  • 20
    • 34247143280 scopus 로고    scopus 로고
    • Fast fixed-point independent vector analysis algorithms for convolutive blind source separation
    • Lee, I., Kim, T., & Lee, T.-W. (2007). Fast fixed-point independent vector analysis algorithms for convolutive blind source separation. Signal Processing, 87(8), 1859-1871.
    • (2007) Signal Processing , vol.87 , Issue.8 , pp. 1859-1871
    • Lee, I.1    Kim, T.2    Lee, T.-W.3
  • 21
    • 51449108058 scopus 로고    scopus 로고
    • On the assumption of spherical symmetry and sparseness for the frequency-domain speech model
    • Lee, I.,&Lee, T.-W. (2007).On the assumption of spherical symmetry and sparseness for the frequency-domain speech model. IEEE Trans. on Speech, Audio and Language Processing, 15(5), 1521-1528.
    • (2007) IEEE Trans. on Speech, Audio and Language Processing , vol.15 , Issue.5 , pp. 1521-1528
    • Lee, I.1    Lee, T.-W.2
  • 23
    • 84898994677 scopus 로고    scopus 로고
    • Blind separation of convolved and delayed sources
    • M. I. Jordan, M. Kearns, & S. A. Solla (Eds.), Cambridge, MA: MIT Press
    • Lee, T.-W., Bell, A. J., & Lambert, R. (1997). Blind separation of convolved and delayed sources. In M. I. Jordan, M. Kearns, & S. A. Solla (Eds.), Advances in neural information processing systems (pp. 758-764). Cambridge, MA: MIT Press.
    • (1997) Advances in neural information processing systems , pp. 758-764
    • Lee, T.-W.1    Bell, A.J.2    Lambert, R.3
  • 24
    • 0033556834 scopus 로고    scopus 로고
    • Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and supergaussian sources
    • Lee, T.-W., Girolami, M., & Sejnowski, T. J. (1999). Independent component analysis using an extended infomax algorithm for mixed sub-gaussian and supergaussian sources. Neural Computation, 11, 417-441.
    • (1999) Neural Computation , vol.11 , pp. 417-441
    • Lee, T.-W.1    Girolami, M.2    Sejnowski, T.J.3
  • 26
    • 0030676410 scopus 로고    scopus 로고
    • Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models
    • Piscataway, NJ: IEEE Press
    • Moulines, E., Cardoso, J.-F., & Gassiat, E. (1997).Maximum likelihood for blind separation and deconvolution of noisy signals using mixture models. In Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing (pp. 3617-3620). Piscataway, NJ: IEEE Press.
    • (1997) Proc. IEEE Int. Conf. on Acoustics, Speech, and Signal Processing , pp. 3617-3620
    • Moulines, E.1    Cardoso, J.-F.2    Gassiat, E.3
  • 27
    • 0035659640 scopus 로고    scopus 로고
    • An approach to blind source separation based on temporal structure of speech signals
    • Murata, N., Ikeda, S., & Ziehe, A. (2001). An approach to blind source separation based on temporal structure of speech signals. Neurocomputing, 41, 1-24.
    • (2001) Neurocomputing , vol.41 , pp. 1-24
    • Murata, N.1    Ikeda, S.2    Ziehe, A.3
  • 28
    • 0000914334 scopus 로고    scopus 로고
    • Convolutive blind separation of non-stationary sources
    • Parra, L., & Spence, C. (2000). Convolutive blind separation of non-stationary sources. IEEE Trans. on Speech and Audio Processing, 8(3), 320-327.
    • (2000) IEEE Trans. on Speech and Audio Processing , vol.8 , Issue.3 , pp. 320-327
    • Parra, L.1    Spence, C.2
  • 29
    • 22944474285 scopus 로고    scopus 로고
    • On the slow convergence of em and vbem in low-noise linear models
    • Petersen, K. B.,Winther, O., & Hansen, L. K. (2005). On the slow convergence of em and vbem in low-noise linear models. Neural Computation, 17, 1921-1926.
    • (2005) Neural Computation , vol.17 , pp. 1921-1926
    • Petersen, K.B.1    Winther, O.2    Hansen, L.K.3
  • 30
    • 0032212942 scopus 로고    scopus 로고
    • Blind separation of convolved mixtures in the frequency domain
    • Smaragdis, P. (1998). Blind separation of convolved mixtures in the frequency domain. Neurocomputing, 22, 21-34.
    • (1998) Neurocomputing , vol.22 , pp. 21-34
    • Smaragdis, P.1
  • 32
    • 0029723365 scopus 로고
    • Blind separation of convolved sources based on information maximization
    • Piscataway, NJ: IEEE Press
    • Torkkola, K. (1966). Blind separation of convolved sources based on information maximization. Proc. IEEE Int. Workshop on Neural Networks for Signal Processing (pp. 423-432). Piscataway, NJ: IEEE Press.
    • (1966) Proc. IEEE Int. Workshop on Neural Networks for Signal Processing , pp. 423-432
    • Torkkola, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.