메뉴 건너뛰기




Volumn 15, Issue 1, 2007, Pages 70-79

Blind source separation exploiting higher-order frequency dependencies

Author keywords

Blind source separation (BSS); Cocktail party problem; Convolutive mixture; Frequency domain; Higher order dependency; Independent component analysis; Permutation problem

Indexed keywords

COCKTAIL PARTY PROBLEM; CONVOLUTIVE MIXTURE; FREQUENCY DOMAIN; HIGHER ORDER DEPENDENCY; PERMUTATION PROBLEM;

EID: 34247155553     PISSN: 15587916     EISSN: None     Source Type: Journal    
DOI: 10.1109/TASL.2006.872618     Document Type: Article
Times cited : (406)

References (28)
  • 4
    • 0029769893 scopus 로고    scopus 로고
    • Multichannel signal separation: Methods and analysis
    • Jan
    • D. Yellin and E. Weinstein, "Multichannel signal separation: methods and analysis," IEEE Trans. Signal Process., vol. 44, no. 1, pp. 106-118, Jan. 1996.
    • (1996) IEEE Trans. Signal Process , vol.44 , Issue.1 , pp. 106-118
    • Yellin, D.1    Weinstein, E.2
  • 5
    • 0003514506 scopus 로고    scopus 로고
    • Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures,
    • Ph.D. dissertation, Univ. Southern California, Los Angeles
    • R. Lambert, "Multichannel blind deconvolution: FIR matrix algebra and separation of multipath mixtures," Ph.D. dissertation, Univ. Southern California, Los Angeles, 1996.
    • (1996)
    • Lambert, R.1
  • 6
    • 0029723365 scopus 로고    scopus 로고
    • Blind separation of convolved sources based on information maximization
    • K. Torkkola, "Blind separation of convolved sources based on information maximization," in Proc. IEEE Int. Workshop Neural Netw. Signal Process., 1996, pp. 423-432.
    • (1996) Proc. IEEE Int. Workshop Neural Netw. Signal Process , pp. 423-432
    • Torkkola, K.1
  • 8
    • 0003874165 scopus 로고    scopus 로고
    • On adaptive filtering on oversampled subbands,
    • Ph.D. dissertation, Signal Process. Div, Univ. Strathclyde, Glasgow, U.K
    • S. Weiß, "On adaptive filtering on oversampled subbands," Ph.D. dissertation, Signal Process. Div., Univ. Strathclyde, Glasgow, U.K., 1997.
    • (1997)
    • Weiß, S.1
  • 9
    • 0032212942 scopus 로고    scopus 로고
    • Blind separation of convolved mixtures in the frequency domain
    • P. Smaragdis, "Blind separation of convolved mixtures in the frequency domain," Neurocomput., vol. 22, pp. 21-34, 1998.
    • (1998) Neurocomput , vol.22 , pp. 21-34
    • Smaragdis, P.1
  • 10
    • 0000914334 scopus 로고    scopus 로고
    • Convolutive blind separation of nonstationary sources
    • May
    • L. Parra and C. Spence, "Convolutive blind separation of nonstationary sources," IEEE Trans. Speech Audio Process., vol. 8, no. 3, pp. 320-327, May 2000.
    • (2000) IEEE Trans. Speech Audio Process , vol.8 , Issue.3 , pp. 320-327
    • Parra, L.1    Spence, C.2
  • 11
    • 0034848297 scopus 로고    scopus 로고
    • A combined approach of array processing and independent component analysis for blind separation of acoustic signals
    • F. Asano, S. Ikeda, M. Ogawa, H. Asoh, and N. Kitawaki, "A combined approach of array processing and independent component analysis for blind separation of acoustic signals," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2001, pp. 2729-2732.
    • (2001) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process , pp. 2729-2732
    • Asano, F.1    Ikeda, S.2    Ogawa, M.3    Asoh, H.4    Kitawaki, N.5
  • 13
    • 0036294876 scopus 로고    scopus 로고
    • A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation
    • M. Z. Ikram and D. R. Morgan, "A beamforming approach to permutation alignment for multichannel frequency-domain blind speech separation," in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process., 2002, pp. 881-884.
    • (2002) Proc. IEEE Int. Conf. Acoust., Speech, Signal Process , pp. 881-884
    • Ikram, M.Z.1    Morgan, D.R.2
  • 14
    • 4344579404 scopus 로고    scopus 로고
    • A robust and precise method for solving the permutation problem of frequency-domain blind source separation
    • Sep
    • H. Sawada, R. Mukai, S. Araki, and S. Makino, "A robust and precise method for solving the permutation problem of frequency-domain blind source separation," IEEE Trans. Speech Audio Process., vol. 12, no. 5, p. 530, Sep. 2004.
    • (2004) IEEE Trans. Speech Audio Process , vol.12 , Issue.5 , pp. 530
    • Sawada, H.1    Mukai, R.2    Araki, S.3    Makino, S.4
  • 16
    • 0035659640 scopus 로고    scopus 로고
    • An approach to blind source separation based on temporal structure of speech signals
    • N. Murata, S. Ikeda, and A. Ziehe, "An approach to blind source separation based on temporal structure of speech signals," Neurocomput., vol. 41, pp. 1-24, 2001.
    • (2001) Neurocomput , vol.41 , pp. 1-24
    • Murata, N.1    Ikeda, S.2    Ziehe, A.3
  • 20
    • 0018455820 scopus 로고
    • Image method for efficiently simulating small room acoustics
    • J. B. Allen and D. A. Berkley, "Image method for efficiently simulating small room acoustics," J. Acoust. Soc. Amer., vol. 65, pp. 943-950, 1979.
    • (1979) J. Acoust. Soc. Amer , vol.65 , pp. 943-950
    • Allen, J.B.1    Berkley, D.A.2
  • 21
    • 0009618460 scopus 로고
    • The Virtual Acoustic Room,
    • Master's thesis, Massachusetts Inst. Technol, Cambridge
    • W. G. Gardner, "The Virtual Acoustic Room," Master's thesis, Massachusetts Inst. Technol., Cambridge, 1992.
    • (1992)
    • Gardner, W.G.1
  • 23
    • 0034222304 scopus 로고    scopus 로고
    • Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces
    • A. Hyvärinen and P. O. Hoyer, "Emergence of phase and shift invariant features by decomposition of natural images into independent feature subspaces," Neural Comput., vol. 12, no. 7, pp. 1705-1720, 2000.
    • (2000) Neural Comput , vol.12 , Issue.7 , pp. 1705-1720
    • Hyvärinen, A.1    Hoyer, P.O.2
  • 24
    • 0035409349 scopus 로고    scopus 로고
    • Topographic independent component analysis
    • A. Hyvärinen, P. O. Hoyer, and M. Inki, "Topographic independent component analysis," Neural Comput., vol. 13, no. 7, pp. 1527-1558, 2001.
    • (2001) Neural Comput , vol.13 , Issue.7 , pp. 1527-1558
    • Hyvärinen, A.1    Hoyer, P.O.2    Inki, M.3
  • 25
    • 0034290916 scopus 로고    scopus 로고
    • ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind separation
    • Oct
    • T.-W. Lee, M. S. Lewicki, and T. Sejnowski, "ICA mixture models for unsupervised classification of non-Gaussian classes and automatic context switching in blind separation," IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 10, pp. 1078-1089, Oct. 2000.
    • (2000) IEEE Trans. Pattern Anal. Mach. Intell , vol.22 , Issue.10 , pp. 1078-1089
    • Lee, T.-W.1    Lewicki, M.S.2    Sejnowski, T.3
  • 26
    • 0036504424 scopus 로고    scopus 로고
    • Unsupervised image classification, segmentation, and enhancement using ICA mixture models
    • Mar
    • T.-W. Lee and M. S. Lewicki, "Unsupervised image classification, segmentation, and enhancement using ICA mixture models," IEEE Trans. Image Process., vol. 11, no. 3, pp. 270-279, Mar. 2002.
    • (2002) IEEE Trans. Image Process , vol.11 , Issue.3 , pp. 270-279
    • Lee, T.-W.1    Lewicki, M.S.2
  • 27
    • 0347517574 scopus 로고    scopus 로고
    • Learning higher order structures in natural images
    • Y. Karklin and M. S. Lewicki, "Learning higher order structures in natural images," Netw.: Comput. Neural Syst., vol. 14, no. 3, pp. 483-499, 2003.
    • (2003) Netw.: Comput. Neural Syst , vol.14 , Issue.3 , pp. 483-499
    • Karklin, Y.1    Lewicki, M.S.2
  • 28
    • 33645816664 scopus 로고    scopus 로고
    • Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution
    • H.-J. Park and T.-W. Lee, "Modeling nonlinear dependencies in natural images using mixture of Laplacian distribution," Adv. Neural Inf. Process. Syst., pp. 1041-1048, 2005.
    • (2005) Adv. Neural Inf. Process. Syst , pp. 1041-1048
    • Park, H.-J.1    Lee, T.-W.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.