-
4
-
-
0033569406
-
Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring
-
Golub, T. R., Slonim, D. K., Tamahyo, P., Huard, C., Gaasenbcek, M., Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A., Bloomfield, C. D., Lander, E. S. (1999), "Molecular classification of cancer: class discovery and class prediction by gene expression monitoring", Science, vol. 286, pp. 531-537.
-
(1999)
Science
, vol.286
, pp. 531-537
-
-
Golub, T.R.1
Slonim, D.K.2
Tamahyo, P.3
Huard, C.4
Gaasenbcek, M.5
Mesirov, J.P.6
Coller, H.7
Loh, M.L.8
Downing, J.R.9
Caligiuri, M.A.10
Bloomfield, C.D.11
Lander, E.S.12
-
5
-
-
84899010991
-
Semisupervised learning with trees
-
S. Thrun, et al, editors
-
Kemp, C., Griffiths, T. L. Stromsten, S., and Tenenbaum, J. B. (2004) "Semisupervised learning with trees", in S. Thrun, et al. (editors) Advances in Neural Information Processing Systems 16.
-
(2004)
Advances in Neural Information Processing Systems 16
-
-
Kemp, C.1
Griffiths, T.L.2
Stromsten, S.3
Tenenbaum, J.B.4
-
6
-
-
0035312886
-
Bayesian approach for neural networks - review and case studies
-
Lampinen, J. and Vehtari, A. (2001) "Bayesian approach for neural networks - review and case studies", Neural Networks, vol. 14, pp. 257-274.
-
(2001)
Neural Networks
, vol.14
, pp. 257-274
-
-
Lampinen, J.1
Vehtari, A.2
-
8
-
-
0028698662
-
Bayesian non-linear modeling for the energy prediction competition
-
MacKay, D. J. C. (1994) "Bayesian non-linear modeling for the energy prediction competition", ASHRAE Transactions, vol. 100, pt. 2, pp. 1053-1062.
-
(1994)
ASHRAE Transactions
, vol.100
, Issue.PART. 2
, pp. 1053-1062
-
-
MacKay, D.J.C.1
-
9
-
-
0004087397
-
Probabilistic Inference Using Markov Chain Monte Carlo Methods
-
Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 144 pages. Available from
-
Neal, R. M. (1993) Probabilistic Inference Using Markov Chain Monte Carlo Methods, Technical Report CRG-TR-93-1, Department of Computer Science, University of Toronto, 144 pages. Available from http://www.cs.utoronto.ca/ ~radford/.
-
(1993)
-
-
Neal, R.M.1
-
10
-
-
0003301456
-
Bayesian Learning for Neural Networks
-
Springer-Verlag
-
Neal, R. M. (1996) Bayesian Learning for Neural Networks, Lecture Notes in Statistics No. 118, Springer-Verlag.
-
(1996)
Lecture Notes in Statistics
, Issue.118
-
-
Neal, R.M.1
-
11
-
-
0001854616
-
Assessing relevance determination methods using DELVE
-
C. M. Bishop editor, Springer-Verlag
-
Neal, R. M. (1998) "Assessing relevance determination methods using DELVE", in C. M. Bishop (editor) Neural Networks and Machine Learning, pp. 97-129, Springer-Verlag.
-
(1998)
Neural Networks and Machine Learning
, pp. 97-129
-
-
Neal, R.M.1
-
12
-
-
0002628667
-
Regression and classification using Gaussian process priors (with discussion)
-
J. M. Bernardo, et al editors, Oxford University Press, pp
-
Neal, R. M. (1999) "Regression and classification using Gaussian process priors" (with discussion), in J. M. Bernardo, et al (editors) Bayesian Statistics 6, Oxford University Press, pp. 475-501.
-
(1999)
Bayesian Statistics 6
, pp. 475-501
-
-
Neal, R.M.1
-
13
-
-
33748700867
-
Defining priors for distributions using Dirichlet diffusion trees
-
Technical Report No. 0104, Dept. of Statistics, University of Toronto, 25 pages
-
Neal, R. M. (2001) "Defining priors for distributions using Dirichlet diffusion trees", Technical Report No. 0104, Dept. of Statistics, University of Toronto, 25 pages.
-
(2001)
-
-
Neal, R.M.1
-
14
-
-
31844452656
-
Density modeling and clustering using Dirichlet diffusion trees
-
J. M. Bernardo, et al, editors, Oxford University Press
-
Neal, R. M. (2003) "Density modeling and clustering using Dirichlet diffusion trees", in J. M. Bernardo, et al. (editors) Bayesian Statistics 7, pp. 619-629, Oxford University Press.
-
(2003)
Bayesian Statistics 7
, pp. 619-629
-
-
Neal, R.M.1
-
15
-
-
34047110041
-
-
Rasmussen, C. E. (199G) Evaluation of Gaussian Processes and Other Methods for Non-linear Regression, PhD Thesis, Dept. of Computer Science, University of Toronto.
-
Rasmussen, C. E. (199G) Evaluation of Gaussian Processes and Other Methods for Non-linear Regression, PhD Thesis, Dept. of Computer Science, University of Toronto.
-
-
-
-
16
-
-
34047173362
-
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) Learning internal representations by error propagation, in D. E. Rumelhart and J. L. McClelland (editors) Parallel Distributed Processing: Explorations in the Micro structure of Cognition, 1: Foundations, Cambridge, Massachusetts: MIT Press.
-
Rumelhart, D. E., Hinton, G. E., and Williams, R. J. (1986) "Learning internal representations by error propagation", in D. E. Rumelhart and J. L. McClelland (editors) Parallel Distributed Processing: Explorations in the Micro structure of Cognition, Volume 1: Foundations, Cambridge, Massachusetts: MIT Press.
-
-
-
|