메뉴 건너뛰기




Volumn 46, Issue 2, 2010, Pages 480-524

High-dimensional Gaussian model selection on a Gaussian design

Author keywords

Gaussian graphical models; Linear regression; Minimax rates of estimation; Model selection; Oracle inequalities

Indexed keywords


EID: 77952560079     PISSN: 02460203     EISSN: 02460203     Source Type: Journal    
DOI: 10.1214/09-AIHP321     Document Type: Article
Times cited : (10)

References (40)
  • 1
    • 51249190305 scopus 로고
    • Statistical predictor identification
    • MR0286233
    • H. Akaike. Statistical predictor identification. Ann. Inst. Statist. Math. 22 (1970) 203-217. MR0286233
    • (1970) Ann. Inst. Statist. Math. , vol.22 , pp. 203-217
    • Akaike, H.1
  • 2
    • 0016355478 scopus 로고
    • A new look at the statistical model identification
    • MR0423716
    • H. Akaike. A new look at the statistical model identification. IEEE Trans. Automat. Control 19 (1974) 716-723. MR0423716
    • (1974) IEEE Trans. Automat. Control , vol.19 , pp. 716-723
    • Akaike, H.1
  • 3
    • 77952562051 scopus 로고    scopus 로고
    • Model selection by resampling penalization
    • S. Arlot. Model selection by resampling penalization. Electron. J. Stat. 3 (2009) 557-624.
    • (2009) Electron. J. Stat. , vol.3 , pp. 557-624
    • Arlot, S.1
  • 4
    • 65349098884 scopus 로고    scopus 로고
    • Gaussian model selection with an unknown variance
    • Y. Baraud, C. Giraud and S. Huet. Gaussian model selection with an unknown variance. Ann. Statist. 37 (2009) 630-672.
    • (2009) Ann. Statist. , vol.37 , pp. 630-672
    • Baraud, Y.1    Giraud, C.2    Huet, S.3
  • 5
    • 68649086910 scopus 로고    scopus 로고
    • Simultaneous analysis of Lasso and Dantzig selector
    • P. Bickel, Y. Ritov and A. Tsybakov. Simultaneous analysis of Lasso and Dantzig selector. Ann. Statist. 37 (2009) 1705-1732.
    • (2009) Ann. Statist. , vol.37 , pp. 1705-1732
    • Bickel, P.1    Ritov, Y.2    Tsybakov, A.3
  • 6
    • 17644420339 scopus 로고    scopus 로고
    • A new lower bound for multiple hypothesis testing
    • MR2241522
    • L. Birgé. A new lower bound for multiple hypothesis testing. IEEE Trans. Inform. Theory 51 (2005) 1611-1615. MR2241522
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 1611-1615
    • Birgé, L.1
  • 7
    • 0000492892 scopus 로고    scopus 로고
    • Minimum contrast estimators on sieves: Exponential bounds and rates of convergence
    • MR1653272
    • L. Birgé and P. Massart. Minimum contrast estimators on sieves: Exponential bounds and rates of convergence. Bernoulli 4 (1998) 329-375. MR1653272
    • (1998) Bernoulli , vol.4 , pp. 329-375
    • Birgé, L.1    Massart, P.2
  • 9
    • 33847613502 scopus 로고    scopus 로고
    • Minimal penalties for Gaussian model selection
    • MR2288064
    • L. Birgé and P. Massart. Minimal penalties for Gaussian model selection. Probab. Theory Related Fields 138 (2007) 33-73. MR2288064
    • (2007) Probab. Theory Related Fields , vol.138 , pp. 33-73
    • Birgé, L.1    Massart, P.2
  • 10
    • 38049043619 scopus 로고    scopus 로고
    • Aggregation for Gaussian regression
    • MR2351101
    • F. Bunea, A. Tsybakov and M. Wegkamp. Aggregation for Gaussian regression. Ann. Statist. 35 (2007) 1674-1697. MR2351101
    • (2007) Ann. Statist. , vol.35 , pp. 1674-1697
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 11
    • 50849114939 scopus 로고    scopus 로고
    • Sparsity oracle inequalities for the Lasso
    • (electronic). MR2312149
    • F. Bunea, A. Tsybakov and M. Wegkamp. Sparsity oracle inequalities for the Lasso. Electron. J. Stat. 1 (2007) 169-194 (electronic). MR2312149
    • (2007) Electron. J. Stat. , vol.1 , pp. 169-194
    • Bunea, F.1    Tsybakov, A.2    Wegkamp, M.3
  • 12
    • 29144439194 scopus 로고    scopus 로고
    • Decoding by linear programming
    • MR2243152
    • E. J. Candes and T. Tao. Decoding by linear programming. IEEE Trans. Inform. Theory 51 (2005) 4203-4215. MR2243152
    • (2005) IEEE Trans. Inform. Theory , vol.51 , pp. 4203-4215
    • Candes, E.J.1    Tao, T.2
  • 13
    • 34548275795 scopus 로고    scopus 로고
    • The Dantzig selector: Statistical estimation when p is much larger than n
    • MR2382644
    • E. Candes and T. Tao. The Dantzig selector: Statistical estimation when p is much larger than n. Ann. Statist. 35 (2007) 2313-2351. MR2382644
    • (2007) Ann. Statist. , vol.35 , pp. 2313-2351
    • Candes, E.1    Tao, T.2
  • 17
    • 0012070851 scopus 로고    scopus 로고
    • Local operator theory, random matrices and Banach spaces
    • North-Holland, Amsterdam, MR1863696
    • K. R. Davidson and S. J. Szarek. Local operator theory, random matrices and Banach spaces. In Handbook of the Geometry of Banach Spaces, Vol.I 317-366. North-Holland, Amsterdam, 2001. MR1863696
    • (2001) In Handbook of the Geometry of Banach Spaces , vol.1 , pp. 317-366
    • Davidson, K.R.1    Szarek, S.J.2
  • 18
    • 85017322137 scopus 로고    scopus 로고
    • Estimation of Gaussian graphs by model selection
    • MR2417393
    • C. Giraud. Estimation of Gaussian graphs by model selection. Electron. J. Stat. 2 (2008) 542-563. MR2417393
    • (2008) Electron. J. Stat. , vol.2 , pp. 542-563
    • Giraud, C.1
  • 19
    • 0034336872 scopus 로고    scopus 로고
    • Power-law correlations, related models for long-range dependence and their simulation
    • MR1808873
    • T. Gneiting. Power-law correlations, related models for long-range dependence and their simulation. J. Appl. Probab. 37 (2000) 1104-1109. MR1808873
    • (2000) J. Appl. Probab. , vol.37 , pp. 1104-1109
    • Gneiting, T.1
  • 20
    • 33947524259 scopus 로고    scopus 로고
    • Estimating high-dimensional directed acyclic graphs with the PC-algorithm
    • M. Kalisch and P. Bühlmann. Estimating high-dimensional directed acyclic graphs with the PC-algorithm. J. Mach. Learn. Res. 8 (2007) 613-636.
    • (2007) J. Mach. Learn. Res. , vol.8 , pp. 613-636
    • Kalisch, M.1    Bühlmann, P.2
  • 21
    • 0034287154 scopus 로고    scopus 로고
    • Adaptive estimation of a quadratic functional by model selection
    • MR1805785
    • B. Laurent and P. Massart. Adaptive estimation of a quadratic functional by model selection. Ann. Statist. 28 (2000) 1302-1338. MR1805785
    • (2000) Ann. Statist. , vol.28 , pp. 1302-1338
    • Laurent, B.1    Massart, P.2
  • 24
    • 77952573371 scopus 로고    scopus 로고
    • Springer, Berlin, (Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, with a foreword by Jean Picard.) MR2319879
    • P. Massart. Concentration Inequalities and Model Selection. Lecture Notes in Mathematics 1896. Springer, Berlin, 2007. (Lectures from the 33rd Summer School on Probability Theory held in Saint-Flour, July 6-23, 2003, with a foreword by Jean Picard.) MR2319879
    • (2007) Concentration Inequalities and Model Selection. Lecture Notes in Mathematics , vol.1896
    • Massart, P.1
  • 25
    • 33747163541 scopus 로고    scopus 로고
    • High-dimensional graphs and variable selection with the Lasso
    • MR2278363
    • N. Meinshausen and P. Bühlmann. High-dimensional graphs and variable selection with the Lasso. Ann. Statist. 34 (2006) 1436-1462. MR2278363
    • (2006) Ann. Statist. , vol.34 , pp. 1436-1462
    • Meinshausen, N.1    Bühlmann, P.2
  • 26
    • 77952564096 scopus 로고    scopus 로고
    • Springer, New York, (From dependence to independence, randomly stopped processes. U-statistics and processes. Martingales and beyond.) MR1666908
    • V. H. de la Peña and E. Giné. Decoupling. Probability and Its Applications. Springer, New York, 1999. (From dependence to independence, randomly stopped processes. U-statistics and processes. Martingales and beyond.) MR1666908
    • (1999) Decoupling. Probability and Its Applications
    • De la Peña, V.H.1    Giné, E.2
  • 27
    • 0002510018 scopus 로고
    • Moments for the inverted Wishart distribution
    • MR0968156
    • D. von Rosen. Moments for the inverted Wishart distribution. Scand. J. Statist. 15 (1988) 97-109. MR0968156
    • (1988) Scand. J. Statist. , vol.15 , pp. 97-109
    • Von Rosen, D.1
  • 29
    • 17644427718 scopus 로고    scopus 로고
    • Causal protein-signaling networks derived from multiparameter single-cell data
    • K. Sachs, O. Perez, D. Pe'er, D. A. Lauffenburger and G. P. Nolan. Causal protein-signaling networks derived from multiparameter single-cell data. Science 308 (2005) 523-529.
    • (2005) Science , vol.308 , pp. 523-529
    • Sachs, K.1    Perez, O.2    Pe'er, D.3    Lauffenburger, D.A.4    Nolan, G.P.5
  • 30
    • 15944364151 scopus 로고    scopus 로고
    • An empirical Bayes approach to inferring large-scale gene association network
    • J. Schäfer and K. Strimmer. An empirical Bayes approach to inferring large-scale gene association network. Bioinformatics 21 (2005) 754-764.
    • (2005) Bioinformatics , vol.21 , pp. 754-764
    • Schäfer, J.1    Strimmer, K.2
  • 31
    • 0000120766 scopus 로고
    • Estimating the dimension of a model
    • MR0468014
    • G. Schwarz. Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464. MR0468014
    • (1978) Ann. Statist. , vol.6 , pp. 461-464
    • Schwarz, G.1
  • 32
    • 77956887130 scopus 로고
    • An optimal selection of regression variables
    • MR0614940
    • R. Shibata. An optimal selection of regression variables. Biometrika 68 (1981) 45-54. MR0614940
    • (1981) Biometrika , vol.68 , pp. 45-54
    • Shibata, R.1
  • 34
    • 85194972808 scopus 로고    scopus 로고
    • Regression shrinkage and selection via the lasso
    • MR1379242
    • R. Tibshirani. Regression shrinkage and selection via the lasso. J. Roy. Statist. Soc. Ser. B 58 (1996) 267-288. MR1379242
    • (1996) J. Roy. Statist. Soc. Ser. B , vol.58 , pp. 267-288
    • Tibshirani, R.1
  • 36
    • 77952575050 scopus 로고    scopus 로고
    • Goodness-of-fit tests for high-dimensional Gaussian linear models
    • To appear
    • N. Verzelen and F. Villers. Goodness-of-fit tests for high-dimensional Gaussian linear models. Ann. Statist. To appear, 2009.
    • (2009) Ann. Statist
    • Verzelen, N.1    Villers, F.2
  • 37
    • 51849083734 scopus 로고    scopus 로고
    • Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting
    • Department of Statistics, UC Berkeley
    • M. J. Wainwright. Information-theoretic limits on sparsity recovery in the high-dimensional and noisy setting. Technical Report 725, Department of Statistics, UC Berkeley, 2007.
    • (2007) Technical Report 725
    • Wainwright, M.J.1
  • 39
    • 33845263263 scopus 로고    scopus 로고
    • On model selection consistency of Lasso
    • MR2274449
    • P. Zhao and B. Yu. On model selection consistency of Lasso. J.Mach. Learn. Res. 7 (2006) 2541-2563. MR2274449
    • (2006) J.Mach. Learn. Res. , vol.7 , pp. 2541-2563
    • Zhao, P.1    Yu, B.2
  • 40
    • 33846114377 scopus 로고    scopus 로고
    • The adaptive Lasso and its oracle properties
    • MR2279469
    • H. Zou. The adaptive Lasso and its oracle properties. J. Amer. Statist. Assoc. 101 (2006) 1418-1429. MR2279469
    • (2006) J. Amer. Statist. Assoc. , vol.101 , pp. 1418-1429
    • Zou, H.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.