-
2
-
-
0842290715
-
Structural optimization using sensitivity analysis and a level-set method
-
Allaire G., Jouve F., Toader A. Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 2004, 194:363-393.
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 363-393
-
-
Allaire, G.1
Jouve, F.2
Toader, A.3
-
3
-
-
0038053170
-
A level set method for shape optimization
-
Allaire G., Jouve F., Toader A. A level set method for shape optimization. C.R. Acad. Sci. Paris, Ser. I 2002, 334:1125-1130.
-
(2002)
C.R. Acad. Sci. Paris, Ser. I
, vol.334
, pp. 1125-1130
-
-
Allaire, G.1
Jouve, F.2
Toader, A.3
-
4
-
-
25844436983
-
Structural optimization using topological and shape sensitivity via a level set method
-
Allaire G., De Gournay F., Jouve F., Toader A.M. Structural optimization using topological and shape sensitivity via a level set method. Control Cybernet. 2005, 34:59-80.
-
(2005)
Control Cybernet.
, vol.34
, pp. 59-80
-
-
Allaire, G.1
De Gournay, F.2
Jouve, F.3
Toader, A.M.4
-
5
-
-
0042221869
-
-
Springer Verlag, Berlin, Heidelberg
-
Bendsøe M., Sigmund O. Topology Optimization: Theory, Methods and Applications 2003, Springer Verlag, Berlin, Heidelberg.
-
(2003)
Topology Optimization: Theory, Methods and Applications
-
-
Bendsøe, M.1
Sigmund, O.2
-
7
-
-
55649112883
-
A level-set method for computing the eigenvalues of elliptic operators defined on compact hypersurfaces
-
Brandman J. A level-set method for computing the eigenvalues of elliptic operators defined on compact hypersurfaces. J. Sci. Comput. 2008, 37:282-315.
-
(2008)
J. Sci. Comput.
, vol.37
, pp. 282-315
-
-
Brandman, J.1
-
8
-
-
0035473388
-
A level set method for inverse problems
-
Burger M. A level set method for inverse problems. Inverse Probl. 2001, 17:1327-1355.
-
(2001)
Inverse Probl.
, vol.17
, pp. 1327-1355
-
-
Burger, M.1
-
9
-
-
0842267881
-
A framework for the construction of level set methods for shape optimization and reconstruction
-
Burger M. A framework for the construction of level set methods for shape optimization and reconstruction. Interf. Free Bound. 2003, 5:301-329.
-
(2003)
Interf. Free Bound.
, vol.5
, pp. 301-329
-
-
Burger, M.1
-
10
-
-
0842312288
-
Incorporating topological derivatives into level set methods
-
Burger M., Hackl B., Ring W. Incorporating topological derivatives into level set methods. J. Comput. Phys. 2004, 194:344-362.
-
(2004)
J. Comput. Phys.
, vol.194
, pp. 344-362
-
-
Burger, M.1
Hackl, B.2
Ring, W.3
-
11
-
-
23844524180
-
A survey on level set methods for inverse problems and optimal design
-
Burger M., Osher S. A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 2005, 16:263-301.
-
(2005)
Eur. J. Appl. Math.
, vol.16
, pp. 263-301
-
-
Burger, M.1
Osher, S.2
-
12
-
-
1642396916
-
Inverse problem techniques for the design of photonic crystals
-
Burger M., Osher S., Yablonovitch E. Inverse problem techniques for the design of photonic crystals. IEICE Trans. Electron. 2004, 87:258-265.
-
(2004)
IEICE Trans. Electron.
, vol.87
, pp. 258-265
-
-
Burger, M.1
Osher, S.2
Yablonovitch, E.3
-
13
-
-
0344550387
-
Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
-
Chan T.F., Tai X.-C. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 2003, 193:40-66.
-
(2003)
J. Comput. Phys.
, vol.193
, pp. 40-66
-
-
Chan, T.F.1
Tai, X.-C.2
-
14
-
-
2942612639
-
Identification of discontinuous coefficients in elliptic problems using total variation regularization
-
Chan T.F., Tai X.-C. Identification of discontinuous coefficients in elliptic problems using total variation regularization. SIAM J. Sci. Comput. 2003, 25:881-904.
-
(2003)
SIAM J. Sci. Comput.
, vol.25
, pp. 881-904
-
-
Chan, T.F.1
Tai, X.-C.2
-
15
-
-
67650443966
-
Level-set, penalization and Cartesian meshes: a paradigm for inverse problems and optimal design
-
Chantalat F., Bruneau C.-H., Galusinski C., Iollo A. Level-set, penalization and Cartesian meshes: a paradigm for inverse problems and optimal design. J. Comput. Phys. 2009, 228:6291-6315.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 6291-6315
-
-
Chantalat, F.1
Bruneau, C.-H.2
Galusinski, C.3
Iollo, A.4
-
16
-
-
0033330905
-
Maximizing band gaps in two-dimensional photonic crystals
-
Cox S.J., Dobson D.C. Maximizing band gaps in two-dimensional photonic crystals. SIAM J. Appl. Math. 1999, 59:2108-2120.
-
(1999)
SIAM J. Appl. Math.
, vol.59
, pp. 2108-2120
-
-
Cox, S.J.1
Dobson, D.C.2
-
17
-
-
0141933418
-
Band structure optimization of two-dimensional photonic crystals in H-polarization
-
Cox S.J., Dobson D.C. Band structure optimization of two-dimensional photonic crystals in H-polarization. J. Comput. Phys. 2000, 158:214-224.
-
(2000)
J. Comput. Phys.
, vol.158
, pp. 214-224
-
-
Cox, S.J.1
Dobson, D.C.2
-
18
-
-
2442711821
-
Analysis of iterative algorithms of Uzawa type for saddle point problems
-
Cui M.-R. Analysis of iterative algorithms of Uzawa type for saddle point problems. Appl. Numer. Math. 2004, 50(2):133-146.
-
(2004)
Appl. Numer. Math.
, vol.50
, Issue.2
, pp. 133-146
-
-
Cui, M.-R.1
-
19
-
-
0037337788
-
Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions
-
Fedkiw R., Sapiro G., Shu C.-W. Shock capturing, level sets, and PDE based methods in computer vision and image processing: a review of Osher's contributions. J. Comput. Phys. 2003, 185:309-341.
-
(2003)
J. Comput. Phys.
, vol.185
, pp. 309-341
-
-
Fedkiw, R.1
Sapiro, G.2
Shu, C.-W.3
-
20
-
-
49549101797
-
Level set method with topological derivatives in shape optimization
-
Fulmanski P., Laurain A., Scheid J.-F., Sokołowski J. Level set method with topological derivatives in shape optimization. Int. J. Comp. Math. 2008, 85:1491-1514.
-
(2008)
Int. J. Comp. Math.
, vol.85
, pp. 1491-1514
-
-
Fulmanski, P.1
Laurain, A.2
Scheid, J.-F.3
Sokołowski, J.4
-
21
-
-
19844373682
-
A fast hybrid k-means level set algorithm for segmentation
-
Statistics and Mathematics
-
F. Gibou, R. Fedkiw, A fast hybrid k-means level set algorithm for segmentation, in: Proc. 4th Annu. Hawaii Int. Conf. Statistics and Mathematics, 2006, pp. 281-291.
-
(2006)
Proc. 4th Annu. Hawaii Int. Conf.
, pp. 281-291
-
-
Gibou, F.1
Fedkiw, R.2
-
22
-
-
3242878427
-
A multilevel, level-set method for optimizing eigenvalues in shape design problems
-
Haber E. A multilevel, level-set method for optimizing eigenvalues in shape design problems. J. Comput. Phys. 2004, 198:518-534.
-
(2004)
J. Comput. Phys.
, vol.198
, pp. 518-534
-
-
Haber, E.1
-
23
-
-
34447270283
-
Incorporating topological derivatives into shape derivatives based level set methods
-
He L., Kao C.-Y., Osher S. Incorporating topological derivatives into shape derivatives based level set methods. J. Comput. Phys. 2007, 225:891-909.
-
(2007)
J. Comput. Phys.
, vol.225
, pp. 891-909
-
-
He, L.1
Kao, C.-Y.2
Osher, S.3
-
24
-
-
2542438832
-
A second order shape optimization approach for image segmentation
-
Hintermüller M., Ring W. A second order shape optimization approach for image segmentation. SIAM J. Appl. Math. 2003, 64:442-467.
-
(2003)
SIAM J. Appl. Math.
, vol.64
, pp. 442-467
-
-
Hintermüller, M.1
Ring, W.2
-
25
-
-
0034503787
-
Weighted ENO schemes for Hamilton-Jacobi equations
-
Jiang G., Peng D. Weighted ENO schemes for Hamilton-Jacobi equations. SIAM J. Sci. Comput. 1999, 21:2126-2143.
-
(1999)
SIAM J. Sci. Comput.
, vol.21
, pp. 2126-2143
-
-
Jiang, G.1
Peng, D.2
-
26
-
-
0002501641
-
Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces
-
Kunisch K., Tai X.-C. Sequential and parallel splitting methods for bilinear control problems in Hilbert spaces. SIAM J. Numer. Anal. 1997, 34:91-118.
-
(1997)
SIAM J. Numer. Anal.
, vol.34
, pp. 91-118
-
-
Kunisch, K.1
Tai, X.-C.2
-
27
-
-
0037275743
-
On the relation between constraint regularization, level sets, and shape optimization
-
Leitão A., Scherzer O. On the relation between constraint regularization, level sets, and shape optimization. Inverse Probl. 2003, 19:1-11.
-
(2003)
Inverse Probl.
, vol.19
, pp. 1-11
-
-
Leitão, A.1
Scherzer, O.2
-
28
-
-
85190205932
-
-
Piecewise constant level set method to interface problems, UCLA CAM Report 06-05
-
H. Li, X.-C. Tai, Piecewise constant level set method to interface problems, UCLA CAM Report 06-05, 2006.
-
(2006)
-
-
Li, H.1
Tai, X.-C.2
-
30
-
-
33646013275
-
A binary level set model and some applications to Mumford-Shah image segmentation
-
Lie J., Lysaker M., Tai X.-C. A binary level set model and some applications to Mumford-Shah image segmentation. IEEE Trans. Image Process. 2006, 15:1171-1181.
-
(2006)
IEEE Trans. Image Process.
, vol.15
, pp. 1171-1181
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
31
-
-
33746291689
-
A variant of the level set method and applications to image segmentation
-
Lie J., Lysaker M., Tai X.-C. A variant of the level set method and applications to image segmentation. Math. Comput. 2006, 75:1155-1174.
-
(2006)
Math. Comput.
, vol.75
, pp. 1155-1174
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
32
-
-
60149087611
-
Design of piezoelectric actuators using a multiphase level set method of piecewise constants
-
Luo Z., Tong L., Luo J., Wei P., Wang M.Y. Design of piezoelectric actuators using a multiphase level set method of piecewise constants. J. Comput. Phys. 2009, 228:2643-2659.
-
(2009)
J. Comput. Phys.
, vol.228
, pp. 2643-2659
-
-
Luo, Z.1
Tong, L.2
Luo, J.3
Wei, P.4
Wang, M.Y.5
-
33
-
-
38049120696
-
A binary level set model for elliptic inverse problems with discontinuous coefficients
-
Nielsen L.K., Tai X.-C., Aanonsen S.I., Espedal M. A binary level set model for elliptic inverse problems with discontinuous coefficients. Int. J. Numer. Anal. Model. 2007, 4:74-99.
-
(2007)
Int. J. Numer. Anal. Model.
, vol.4
, pp. 74-99
-
-
Nielsen, L.K.1
Tai, X.-C.2
Aanonsen, S.I.3
Espedal, M.4
-
35
-
-
0000653947
-
Level set methods: an overview and some recent results
-
Osher S., Fedkiw R. Level set methods: an overview and some recent results. J. Comput. Phys. 2001, 169:463-502.
-
(2001)
J. Comput. Phys.
, vol.169
, pp. 463-502
-
-
Osher, S.1
Fedkiw, R.2
-
37
-
-
0000653948
-
Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum
-
Osher S., Santosa F. Level set methods for optimization problems involving geometry and constraints I. Frequencies of a two-density inhomogeneous drum. J. Comput. Phys. 2001, 171:272-288.
-
(2001)
J. Comput. Phys.
, vol.171
, pp. 272-288
-
-
Osher, S.1
Santosa, F.2
-
38
-
-
44749084234
-
Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations
-
Osher S., Sethian J.A. Fronts propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79:12-49.
-
(1988)
J. Comput. Phys.
, vol.79
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
39
-
-
0026204106
-
High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations
-
Osher S., Shu C.-W. High-order essentially non-oscillatory schemes for Hamilton-Jacobi equations. SIAM J. Numer. Anal. 1991, 28:907-922.
-
(1991)
SIAM J. Numer. Anal.
, vol.28
, pp. 907-922
-
-
Osher, S.1
Shu, C.-W.2
-
40
-
-
3142698698
-
A simple mesh generator in matlab
-
Persson P.-O., Strang G. A simple mesh generator in matlab. SIAM Rev. 2004, 46:329-345.
-
(2004)
SIAM Rev.
, vol.46
, pp. 329-345
-
-
Persson, P.-O.1
Strang, G.2
-
43
-
-
44049111982
-
Nonlinear total variation based noise removal algorithms
-
Rudin L., Osher S., Fatemi E. Nonlinear total variation based noise removal algorithms. Physica D 1992, 60:259-268.
-
(1992)
Physica D
, vol.60
, pp. 259-268
-
-
Rudin, L.1
Osher, S.2
Fatemi, E.3
-
46
-
-
0001176192
-
Structural boundary design via level set method and immersed interface methods
-
Sethian J.A., Wiegmann A. Structural boundary design via level set method and immersed interface methods. J. Comput. Phys. 2000, 163:489-528.
-
(2000)
J. Comput. Phys.
, vol.163
, pp. 489-528
-
-
Sethian, J.A.1
Wiegmann, A.2
-
47
-
-
0032681559
-
On the topological derivative in shape optimization
-
Sokołowski J., Żochowski A. On the topological derivative in shape optimization. SIAM J. Control Optim. 1999, 37:1251-1272.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1251-1272
-
-
Sokołowski, J.1
Zochowski, A.2
-
49
-
-
85190203645
-
-
A fast algorithm for level set based optimization, UCLA CAM Report 02-68
-
B. Song, T.F. Chan, A fast algorithm for level set based optimization, UCLA CAM Report 02-68, 2002.
-
(2002)
-
-
Song, B.1
Chan, T.F.2
-
50
-
-
28144444111
-
A level set approach for computing solutions to incompressible two-phase flow
-
Sussman M., Smereka P., Osher S. A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 1994, 114:146-159.
-
(1994)
J. Comput. Phys.
, vol.114
, pp. 146-159
-
-
Sussman, M.1
Smereka, P.2
Osher, S.3
-
51
-
-
24644508476
-
A survey on multiple level set methods with applications for identifying piecewise constant functions
-
Tai X.-C., Chan T.F. A survey on multiple level set methods with applications for identifying piecewise constant functions. Int. J. Numer. Anal. Model. 2004, 1:25-48.
-
(2004)
Int. J. Numer. Anal. Model.
, vol.1
, pp. 25-48
-
-
Tai, X.-C.1
Chan, T.F.2
-
52
-
-
33846621880
-
Image segmentation using some piecewise constant level set methods with MBO type of projection
-
Tai X.-C., Christiansen O. Image segmentation using some piecewise constant level set methods with MBO type of projection. Int. J. Comp. Vis. 2007, 73:61-76.
-
(2007)
Int. J. Comp. Vis.
, vol.73
, pp. 61-76
-
-
Tai, X.-C.1
Christiansen, O.2
-
53
-
-
34147142049
-
A piecewise constant level set method for elliptic inverse problems
-
Tai X.-C., Li H. A piecewise constant level set method for elliptic inverse problems. Appl. Numer. Math. 2007, 57:686-696.
-
(2007)
Appl. Numer. Math.
, vol.57
, pp. 686-696
-
-
Tai, X.-C.1
Li, H.2
-
54
-
-
85190190362
-
-
Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, UCLA CAM Report 09-05
-
X.-C. Tai, C. Wu, Augmented Lagrangian method, dual methods and split Bregman iteration for ROF model, UCLA CAM Report 09-05, 2009.
-
(2009)
-
-
Tai, X.-C.1
Wu, C.2
-
55
-
-
77952430538
-
Fast sweeping algorithms for a class of Hamilton-Jacobi equations
-
Tsai Y.-H.R., Cheng L.-T., Osher S., Zhao H.-K. Fast sweeping algorithms for a class of Hamilton-Jacobi equations. J. Comput. Phys. 1996, 127:179-195.
-
(1996)
J. Comput. Phys.
, vol.127
, pp. 179-195
-
-
Tsai, Y.-H.R.1
Cheng, L.-T.2
Osher, S.3
Zhao, H.-K.4
-
56
-
-
33846252014
-
An extended level set method for shape and topology optimization
-
Wang S.Y., Lim K.M., Khoo B.C., Wang M.Y. An extended level set method for shape and topology optimization. J. Comput. Phys. 2007, 221:395-421.
-
(2007)
J. Comput. Phys.
, vol.221
, pp. 395-421
-
-
Wang, S.Y.1
Lim, K.M.2
Khoo, B.C.3
Wang, M.Y.4
-
57
-
-
0037414968
-
A level set method for structural topology optimization
-
Wang M.Y., Wang X., Guo D. A level set method for structural topology optimization. Comput. Meth. Appl. Mech. Eng. 2003, 192:227-246.
-
(2003)
Comput. Meth. Appl. Mech. Eng.
, vol.192
, pp. 227-246
-
-
Wang, M.Y.1
Wang, X.2
Guo, D.3
-
58
-
-
64049088299
-
Piecewise constant level set method for structural topology optimization
-
Wei P., Wang M.Y. Piecewise constant level set method for structural topology optimization. Int. J. Numer. Meth. Eng. 2009, 78:379-402.
-
(2009)
Int. J. Numer. Meth. Eng.
, vol.78
, pp. 379-402
-
-
Wei, P.1
Wang, M.Y.2
-
59
-
-
0030210970
-
A variational level set approach to multiphase motion
-
Zhao H.-K., Chan T.F., Merriman B., Osher S. A variational level set approach to multiphase motion. J. Comput. Phys. 1996, 127:179-195.
-
(1996)
J. Comput. Phys.
, vol.127
, pp. 179-195
-
-
Zhao, H.-K.1
Chan, T.F.2
Merriman, B.3
Osher, S.4
-
60
-
-
54249147959
-
A variational level set method for the topology optimization of steady-state Navier-Stokes flow
-
Zhou S., Li Q. A variational level set method for the topology optimization of steady-state Navier-Stokes flow. J. Comput. Phys. 2008, 227:10178-10195.
-
(2008)
J. Comput. Phys.
, vol.227
, pp. 10178-10195
-
-
Zhou, S.1
Li, Q.2
|