-
1
-
-
0035362767
-
Grid refinement and scaling for distributed parameter estimation problems
-
Ascher U., and Haber E. Grid refinement and scaling for distributed parameter estimation problems. Inverse Problems 17 (2001) 571-590
-
(2001)
Inverse Problems
, vol.17
, pp. 571-590
-
-
Ascher, U.1
Haber, E.2
-
2
-
-
34147191174
-
-
U. Ascher, E. Haber, Computational methods for large distributed parameter estimation problems with possible discontinuities, in: M. Colaco, H. Orlande, G. Dulikravich (Eds.), Symp. Inverse Problems, Design and Optimization, 2004, pp. 201-208. Can be downloaded from: http://www.cs.ubc.ca/spider/ascher/papers/ah3.pdf or http://www.lmt.coppe.ufrj.br/ipdo/papers%5Cipdo-042.pdf
-
-
-
-
3
-
-
33746286478
-
On effective methods for implicit piecewise smooth surface recovery
-
Ascher U., Haber E., and Huang H. On effective methods for implicit piecewise smooth surface recovery. SIAM J. Scient. Comput. 28 (2006) 339-368
-
(2006)
SIAM J. Scient. Comput.
, vol.28
, pp. 339-368
-
-
Ascher, U.1
Haber, E.2
Huang, H.3
-
4
-
-
0035473388
-
A level set method for inverse problems
-
Burger M. A level set method for inverse problems. Inverse Problems 17 (2001) 1327-1355
-
(2001)
Inverse Problems
, vol.17
, pp. 1327-1355
-
-
Burger, M.1
-
5
-
-
23844524180
-
A survey on level set methods for inverse problems and optimal design
-
Burger M., and Osher S.J. A survey on level set methods for inverse problems and optimal design. European J. Appl. Math. 16 2 (2005) 263-301
-
(2005)
European J. Appl. Math.
, vol.16
, Issue.2
, pp. 263-301
-
-
Burger, M.1
Osher, S.J.2
-
6
-
-
0345655616
-
Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations
-
Bristeau M., Etgen G., Fitzgibbon W., Lions J.L., Periaux J., and Wheeler M.F. (Eds), Willey, New York
-
Chan T.F., and Tai X.-C. Augmented Lagrangian and total variation methods for recovering discontinuous coefficients from elliptic equations. In: Bristeau M., Etgen G., Fitzgibbon W., Lions J.L., Periaux J., and Wheeler M.F. (Eds). Computational Science for the 21st Century (1997), Willey, New York 597-607
-
(1997)
Computational Science for the 21st Century
, pp. 597-607
-
-
Chan, T.F.1
Tai, X.-C.2
-
7
-
-
2942612639
-
Identification of discontinuous coefficients from elliptic problems using total variation regularization
-
Chan T.F., and Tai X.-C. Identification of discontinuous coefficients from elliptic problems using total variation regularization. SIAM J. Sci. Comput. 25 3 (2003) 881-904
-
(2003)
SIAM J. Sci. Comput.
, vol.25
, Issue.3
, pp. 881-904
-
-
Chan, T.F.1
Tai, X.-C.2
-
8
-
-
0344550387
-
Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients
-
Chan T.F., and Tai X.-C. Level set and total variation regularization for elliptic inverse problems with discontinuous coefficients. J. Comput. Phys. 193 (2003) 40-66
-
(2003)
J. Comput. Phys.
, vol.193
, pp. 40-66
-
-
Chan, T.F.1
Tai, X.-C.2
-
9
-
-
84996143333
-
Regularization of linear least squares problems by total bounded variation
-
(electronic)
-
Chavent G., and Kunisch K. Regularization of linear least squares problems by total bounded variation. ESAIM Control Optim. Calc. Var. 2 (1997) 359-376 (electronic)
-
(1997)
ESAIM Control Optim. Calc. Var.
, vol.2
, pp. 359-376
-
-
Chavent, G.1
Kunisch, K.2
-
10
-
-
0032633972
-
An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems
-
(electronic)
-
Chen Z., and Zou J. An augmented Lagrangian method for identifying discontinuous parameters in elliptic systems. SIAM J. Control Optim. 37 3 (1999) 892-910 (electronic)
-
(1999)
SIAM J. Control Optim.
, vol.37
, Issue.3
, pp. 892-910
-
-
Chen, Z.1
Zou, J.2
-
11
-
-
34147127633
-
-
O. Christiansen, X.-C. Tai, Fast implementation of piecewise constant level set methods, Cam-report-06, UCLA, Applied Mathematics, 2005
-
-
-
-
12
-
-
16844364446
-
Electrical impedance tomography using level set representation and total variational regularization
-
Chung E.T., Chan T.F., and Tai X.-C. Electrical impedance tomography using level set representation and total variational regularization. J. Comput. Phys. 205 (2005) 357-372
-
(2005)
J. Comput. Phys.
, vol.205
, pp. 357-372
-
-
Chung, E.T.1
Chan, T.F.2
Tai, X.-C.3
-
13
-
-
33645682856
-
Energy minimization based segmentation and denoising using a multilayer level set approach
-
Rangarajan A., Vemuri B.C., and Yuille A.L. (Eds), Springer, Berlin
-
Chung J.T., and Vese L.A. Energy minimization based segmentation and denoising using a multilayer level set approach. In: Rangarajan A., Vemuri B.C., and Yuille A.L. (Eds). Lecture Notes in Computer Science vol. 3757 (2005), Springer, Berlin 439-455
-
(2005)
Lecture Notes in Computer Science
, vol.3757
, pp. 439-455
-
-
Chung, J.T.1
Vese, L.A.2
-
14
-
-
0034292566
-
A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets
-
(special issue on Electromagnetic Imaging and Inversion of the Earth's Subsurface)
-
Dorn O., Miller E., and Rappaport C. A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets. Inverse Problems 16 (2000) 1119-1156 (special issue on Electromagnetic Imaging and Inversion of the Earth's Subsurface)
-
(2000)
Inverse Problems
, vol.16
, pp. 1119-1156
-
-
Dorn, O.1
Miller, E.2
Rappaport, C.3
-
15
-
-
34147120812
-
-
S. Esedoglu, Y.-H.R. Tsai, Threshold dynamics for the piecewise constant Mumford-shah functional, Tech. Rep. CAM-report-04-63, UCLA Dep. Math., 2004
-
-
-
-
17
-
-
0035473295
-
Level-set function approach to an inverse interface problem
-
Ito K., Kunisch K., and Li Z. Level-set function approach to an inverse interface problem. Inverse Problems 17 (2001) 1225-1242
-
(2001)
Inverse Problems
, vol.17
, pp. 1225-1242
-
-
Ito, K.1
Kunisch, K.2
Li, Z.3
-
18
-
-
24644482020
-
Piecewise constant level set methods and image segmentation
-
Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005. Kimmel R., Sochen N., and Weickert J. (Eds), Springer, Heidelberg
-
Lie J., Lysaker M., and Tai X.-C. Piecewise constant level set methods and image segmentation. In: Kimmel R., Sochen N., and Weickert J. (Eds). Scale Space and PDE Methods in Computer Vision: 5th International Conference, Scale-Space 2005. Lecture Notes in Computer Science vol. 3459 (2005), Springer, Heidelberg 573-584
-
(2005)
Lecture Notes in Computer Science
, vol.3459
, pp. 573-584
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
19
-
-
34147149261
-
-
J. Lie, M. Lysaker, X.-C. Tai, A binary level set model and some applications to Mumford-Shah image segmentation, IEEE Trans. Image Process., in press. Also as UCLA, Applied Math., CAM-report-04-31, 2004
-
-
-
-
20
-
-
33746291689
-
A variant of the levelset method and applications to image segmentation
-
Lie J., Lysaker M., and Tai X.-C. A variant of the levelset method and applications to image segmentation. Math. Comp. 75 (2006) 1155-1174
-
(2006)
Math. Comp.
, vol.75
, pp. 1155-1174
-
-
Lie, J.1
Lysaker, M.2
Tai, X.-C.3
-
21
-
-
28544445605
-
Reconstruction by level sets of n-ary scattering obstacles
-
Litman A. Reconstruction by level sets of n-ary scattering obstacles. Inverse Problems 21 6 (2005) S131-S152
-
(2005)
Inverse Problems
, vol.21
, Issue.6
-
-
Litman, A.1
-
22
-
-
0037753379
-
A parallel splitting up method and its application to Navier-Stokes equations
-
Lu T., Neittaanmäki P., and Tai X.-C. A parallel splitting up method and its application to Navier-Stokes equations. Appl. Math. Lett. 4 2 (1991) 25-29
-
(1991)
Appl. Math. Lett.
, vol.4
, Issue.2
, pp. 25-29
-
-
Lu, T.1
Neittaanmäki, P.2
Tai, X.-C.3
-
23
-
-
0038091085
-
A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations
-
Lu T., Neittaanmäki P., and Tai X.-C. A parallel splitting-up method for partial differential equations and its applications to Navier-Stokes equations. RAIRO Modél. Math. Anal. Numér. 26 6 (1992) 673-708
-
(1992)
RAIRO Modél. Math. Anal. Numér.
, vol.26
, Issue.6
, pp. 673-708
-
-
Lu, T.1
Neittaanmäki, P.2
Tai, X.-C.3
-
24
-
-
21244463217
-
Parameter estimation with the augmented Lagrangian method for a parabolic equation
-
Nilssen T.K., and Tai X.C. Parameter estimation with the augmented Lagrangian method for a parabolic equation. J. Optim. Theory Appl. 124 2 (2005) 435-453
-
(2005)
J. Optim. Theory Appl.
, vol.124
, Issue.2
, pp. 435-453
-
-
Nilssen, T.K.1
Tai, X.C.2
-
25
-
-
44749084234
-
Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
-
Osher S., and Sethian J.A. Fronts propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49
-
(1988)
J. Comput. Phys.
, vol.79
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
26
-
-
84996143735
-
A level-set approach for inverse problems involving obstacles
-
Santosa F. A level-set approach for inverse problems involving obstacles. ESAIM: Contr. Optim. Calc. Var. 1 (1996) 17-33
-
(1996)
ESAIM: Contr. Optim. Calc. Var.
, vol.1
, pp. 17-33
-
-
Santosa, F.1
-
27
-
-
34147127799
-
-
J. Shen, Gamma-convergence approximation to piecewise constant Mumford-Shah segmentation, Tech. Rep. CAM-report-05-16, UCLA Dep. Math., 2005
-
-
-
-
28
-
-
34147109406
-
-
B. Song, T. Chan, A fast algorithm for level set based optimization, CAM-UCLA, 68, 2002
-
-
-
-
29
-
-
24644508476
-
A survey on multiple level set methods with some applications for identifying piecewise constant functions
-
Tai X.-C., and Chan T.F. A survey on multiple level set methods with some applications for identifying piecewise constant functions. Int. J. Numer. Anal. Modelling 1 1 (2004) 25-48
-
(2004)
Int. J. Numer. Anal. Modelling
, vol.1
, Issue.1
, pp. 25-48
-
-
Tai, X.-C.1
Chan, T.F.2
-
30
-
-
34147108871
-
-
X.-C. Tai, C. Yao, Fast piecewise constant level set method with newton updating, Technical Report, UCLA, Applied Math. CAM-report-05-52, 2005
-
-
-
-
31
-
-
34147104596
-
-
X.-C. Tai, O. Christiansen, P. Lin, I. Skjaelaaen, A remark on the mbo scheme and some piecewise constant level set methods, Technical Report, UCLA, Applied Mathematics, CAM-report-05-24, 2005
-
-
-
|