-
2
-
-
20044371668
-
A level-set method for vibration and multiple loads structural optimization
-
To appear in
-
ALLAIRE, G. and JOUVE, F. (2005) A level-set method for vibration and multiple loads structural optimization. To appear in Comput. Methods Appl. Mech. Engrg.
-
(2005)
Comput. Methods Appl. Mech. Engrg.
-
-
Allaire, G.1
Jouve, F.2
-
3
-
-
0038053170
-
A level set method for shape optimization
-
ALLAIRE, G., JOUVE, F. and TOADER, A.-M. (2002) A level set method for shape optimization. C. R. Acad. Sci. Paris, Série I, 334, 1125-1130.
-
(2002)
C. R. Acad. Sci. Paris, Série I
, vol.334
, pp. 1125-1130
-
-
Allaire, G.1
Jouve, F.2
Toader, A.-M.3
-
4
-
-
0842290715
-
Structural optimization using sensitivity analysis and a level set method
-
ALLAIRE, G., JOUVE, F. and TOADER, A.-M. (2004) Structural optimization using sensitivity analysis and a level set method, J. Comp. Phys. 194 (1), 363-393.
-
(2004)
J. Comp. Phys.
, vol.194
, Issue.1
, pp. 363-393
-
-
Allaire, G.1
Jouve, F.2
Toader, A.-M.3
-
6
-
-
0042221869
-
-
Springer Verlag, New York
-
BENDSØE, M. and SIGMUND, O. (2003) Topology Optimization. Theory, Methods, and Applications. Springer Verlag, New York.
-
(2003)
Topology Optimization. Theory, Methods, and Applications
-
-
Bendsøe, M.1
Sigmund, O.2
-
7
-
-
0842267881
-
A framework for the construction of level set methods for shape optimization and reconstruction
-
BURGER, M. (2003) A framework for the construction of level set methods for shape optimization and reconstruction. Interfaces and Free Boundaries 5, 301-329.
-
(2003)
Interfaces and Free Boundaries
, vol.5
, pp. 301-329
-
-
Burger, M.1
-
8
-
-
0842312288
-
Incorporating topological derivatives into level set methods
-
BURGER, M., HACKL, B. and RING, W. (2004) Incorporating topological derivatives into level set methods. J. Comp. Phys. 194 (1), 344-362.
-
(2004)
J. Comp. Phys.
, vol.194
, Issue.1
, pp. 344-362
-
-
Burger, M.1
Hackl, B.2
Ring, W.3
-
9
-
-
0033847129
-
The shape and topological optimizations connection
-
IV WCCM, Part II (Buenos Aires, 1998)
-
CÉA, J., GARREAU, S., GUILLAUME, P. and MASMOUDI, M. (2000) The shape and topological optimizations connection. IV WCCM, Part II (Buenos Aires, 1998), Comput. Methods Appl. Mech. Engrg. 188, 713-726.
-
(2000)
Comput. Methods Appl. Mech. Engrg.
, vol.188
, pp. 713-726
-
-
Céa, J.1
Garreau, S.2
Guillaume, P.3
Masmoudi, M.4
-
10
-
-
34249772762
-
Bubble method for topology and shape optimization of structures
-
ESCHENAUER, H. and SCHUMACHER, A. (1994) Bubble method for topology and shape optimization of structures. Structural Optimization 8, 42-51.
-
(1994)
Structural Optimization
, vol.8
, pp. 42-51
-
-
Eschenauer, H.1
Schumacher, A.2
-
11
-
-
0035665129
-
The topological asymptotic for PDE systems: The elasticity case
-
GARREAU, S., GUILLAUME, P. and MASMOUDI, M. (2001) The topological asymptotic for PDE systems: the elasticity case. SIAM J. Control Optim. 39 (6), 1756-1778.
-
(2001)
SIAM J. Control Optim.
, vol.39
, Issue.6
, pp. 1756-1778
-
-
Garreau, S.1
Guillaume, P.2
Masmoudi, M.3
-
13
-
-
85035808024
-
Etudes de problèmes d'optimal design
-
Springer Verlag, Berlin
-
MURAT, F. and SIMON, S. (1976) Etudes de problèmes d'optimal design. Lecture Notes in Computer Science 41, Springer Verlag, Berlin, 54-62.
-
(1976)
Lecture Notes in Computer Science
, vol.41
, pp. 54-62
-
-
Murat, F.1
Simon, S.2
-
14
-
-
3843081807
-
The topological derivative of the Dirichlet integral under formation of a thin ligament
-
NAZAROV, S.A. and SOKOŁOWSKI, J. (2004) The topological derivative of the Dirichlet integral under formation of a thin ligament. Siberian Math. J. 45, 341-355.
-
(2004)
Siberian Math. J.
, vol.45
, pp. 341-355
-
-
Nazarov, S.A.1
SokoŁowski, J.2
-
15
-
-
0000653948
-
Level set methods for optimization problems involving geometry and constraints: Frequencies of a two-density inhomogeneous drum
-
OSHER, S. and SANTOSA, F. (2001) Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comp. Phys. 171, 272-288.
-
(2001)
J. Comp. Phys.
, vol.171
, pp. 272-288
-
-
Osher, S.1
Santosa, F.2
-
16
-
-
44749084234
-
Front propagating with curvature dependent speed: Algorithms based on Hamilton-Jacobi formulations
-
OSHER, S. and SETHIAN, J.A. (1988) Front propagating with curvature dependent speed: algorithms based on Hamilton-Jacobi formulations. J. Comp. Phys. 78, 12-49.
-
(1988)
J. Comp. Phys.
, vol.78
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
19
-
-
0001176192
-
Structural boundary design via level set and immersed interface methods
-
SETHIAN, J. and WIEGMANN, A. (2000) Structural boundary design via level set and immersed interface methods. J. Comp. Phys. 163, 489-528.
-
(2000)
J. Comp. Phys.
, vol.163
, pp. 489-528
-
-
Sethian, J.1
Wiegmann, A.2
-
20
-
-
0001351887
-
Differentiation with respect to the domain in boundary value problems
-
SIMON, J. (1980) Differentiation with respect to the domain in boundary value problems. Num. Funct. Anal. Optimz. 2, 649-687.
-
(1980)
Num. Funct. Anal. Optimz.
, vol.2
, pp. 649-687
-
-
Simon, J.1
-
21
-
-
0032681559
-
On the topological derivative in shape optimization
-
SOKOŁOWSKI, J. and ŻOCHOWSKI, A. (1999) On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251-1272.
-
(1999)
SIAM J. Control Optim.
, vol.37
, pp. 1251-1272
-
-
Sokołowski, J.1
Zochowski, A.2
-
22
-
-
0035415671
-
Topological derivatives of shape functionals for elasticity systems
-
SOKOŁOWSKI, J. and ŻOCHOWSKI, A. (2001) Topological derivatives of shape functionals for elasticity systems. Mech. Structures Mach. 29 (3), 331-349.
-
(2001)
Mech. Structures Mach.
, vol.29
, Issue.3
, pp. 331-349
-
-
Sokołowski, J.1
Zochowski, A.2
-
24
-
-
0037414968
-
A level set method for structural topology optimization
-
WANG, M.Y., WANG, X. and Guo, D. (2003) A level set method for structural topology optimization. Comput. Methods Appl. Mech. Engrg. 192, 227-246.
-
(2003)
Comput. Methods Appl. Mech. Engrg.
, vol.192
, pp. 227-246
-
-
Wang, M.Y.1
Wang, X.2
Guo, D.3
-
25
-
-
25844440458
-
Incorporating topological derivatives into level set methods for structural topology optimization
-
T. Lewinski et al., eds., Polish Academy of Sciences, Warsaw
-
WANG, X., YULIN, M. and WANG, M.Y. (2004) Incorporating topological derivatives into level set methods for structural topology optimization. In: T. Lewinski et al., eds., in Optimal shape design and modeling, Polish Academy of Sciences, Warsaw, 145-157.
-
(2004)
Optimal Shape Design and Modeling
, pp. 145-157
-
-
Wang, X.1
Yulin, M.2
Wang, M.Y.3
|