-
3
-
-
0035473388
-
A level set method for inverse problems
-
Burger M 2001 A level set method for inverse problems Inverse Problems 17 1327-55
-
(2001)
Inverse Problems
, vol.17
, pp. 1327-1355
-
-
Burger, M.1
-
5
-
-
0034292566
-
A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets
-
Dorn O, Miller E L and Rappaport C M 2000 A shape reconstruction method for electromagnetic tomography using adjoint fields and level sets Inverse Problems 16 1119-56
-
(2000)
Inverse Problems
, vol.16
, pp. 1119-1156
-
-
Dorn, O.1
Miller, E.L.2
Rappaport, C.M.3
-
10
-
-
0034298994
-
Nonstationary iterated Tikhouov-Morozov method and third order differential equations for the evaluation of unbounded operators
-
Groetsch C W and Scherzer O 2000 Nonstationary iterated Tikhouov-Morozov method and third order differential equations for the evaluation of unbounded operators Math. Methods Appl. Sci. 23 1287-300
-
(2000)
Math. Methods Appl. Sci.
, vol.23
, pp. 1287-1300
-
-
Groetsch, C.W.1
Scherzer, O.2
-
11
-
-
0000298487
-
Iterative methods for the reconstruction of an inverse potential problem
-
Hettlich F and Rundell W 1996 Iterative methods for the reconstruction of an inverse potential problem Inverse Problems 12 251-66
-
(1996)
Inverse Problems
, vol.12
, pp. 251-266
-
-
Hettlich, F.1
Rundell, W.2
-
12
-
-
0035473295
-
Level-set function approach to an inverse interface problem
-
Ito K, Kunisch K and Li Z 2001 Level-set function approach to an inverse interface problem Inverse Problems 17 1225-42
-
(2001)
Inverse Problems
, vol.17
, pp. 1225-1242
-
-
Ito, K.1
Kunisch, K.2
Li, Z.3
-
13
-
-
0013241185
-
Scale-space and morphology in computer vision
-
(Berlin: Springer)
-
Kerckhove M (ed) 2001 Scale-Space and Morphology in Computer Vision (Springer Lecture Notes in Computer Science vol 2106) (Berlin: Springer)
-
(2001)
Springer Lecture Notes in Computer Science
, vol.2106
-
-
Kerckhove, M.1
-
16
-
-
0000386587
-
Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set
-
Litman A, Lesselier D and Santosa F 1998 Reconstruction of a two-dimensional binary obstacle by controlled evolution of a level-set Inverse Problems 14 685-706
-
(1998)
Inverse Problems
, vol.14
, pp. 685-706
-
-
Litman, A.1
Lesselier, D.2
Santosa, F.3
-
19
-
-
0003268344
-
Scale-space theories in computer vision
-
Proc. 2nd Int. Conf. Scale-Space'99 (Corfu, Greece, 1999) (Berlin: Springer)
-
Nielsen M, Johansen P, Olsen O F and Weickert J (ed) 1999 Scale-Space Theories in Computer Vision (Springer Lecture Notes in Computer Science vol 1683) Proc. 2nd Int. Conf. Scale-Space'99 (Corfu, Greece, 1999) (Berlin: Springer)
-
(1999)
Springer Lecture Notes in Computer Science
, vol.1683
-
-
Nielsen, M.1
Johansen, P.2
Olsen, O.F.3
Weickert, J.4
-
20
-
-
44749084234
-
Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
-
Osher S and Sethian J A 1988 Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulations J. Comput. Phys. 79 12-49
-
(1988)
J. Comput. Phys.
, vol.79
, pp. 12-49
-
-
Osher, S.1
Sethian, J.A.2
-
21
-
-
0035665603
-
Shape inversion from TM and TE real data by controlled evolution of level sets
-
(Special section: Testing inversion algorithms against experimental data)
-
Ramananjaona C, Lambert M and Lesselier D 2001 Shape inversion from TM and TE real data by controlled evolution of level sets Inverse Problems 17 1585-95 (Special section: Testing inversion algorithms against experimental data)
-
(2001)
Inverse Problems
, vol.17
, pp. 1585-1595
-
-
Ramananjaona, C.1
Lambert, M.2
Lesselier, D.3
-
22
-
-
0035668126
-
Shape reconstruction of buried obstacles by controlled evolution of a level set: From a min-max formulation to numerical experimentation
-
Ramananjaona C, Lambert M, Lesselier D and Zolésio J-P 2001 Shape reconstruction of buried obstacles by controlled evolution of a level set: from a min-max formulation to numerical experimentation Inverse Problems 17 1087-111
-
(2001)
Inverse Problems
, vol.17
, pp. 1087-1111
-
-
Ramananjaona, C.1
Lambert, M.2
Lesselier, D.3
Zolésio, J.-P.4
-
23
-
-
84996143735
-
A level-set approach for inverse problems involving obstacles
-
(electronic)
-
Santosa F 1995/96 A level-set approach for inverse problems involving obstacles ESAIM Contrôle Optim. Calc. Var. 1 17-33 (electronic)
-
(1995)
ESAIM Contrôle Optim. Calc. Var.
, vol.1
, pp. 17-33
-
-
Santosa, F.1
-
28
-
-
0013243263
-
On the asymptotical regularization of nonlinear ill-posed problems
-
Tautenhahn U 1994 On the asymptotical regularization of nonlinear ill-posed problems Inverse Problems 10 1405-18
-
(1994)
Inverse Problems
, vol.10
, pp. 1405-1418
-
-
Tautenhahn, U.1
-
29
-
-
0013242245
-
On the asymptotical regularization method for nonlinear ill-posed problems
-
(Proc. Int. Workshop on Inverse Problems, HoChiMinh City, Vietnam, Jan. 1995) ed Dang Dinh Ang et al (Hanoi: Vietnam Mathematical Society)
-
Tantenhahn U 1995 On the asymptotical regularization method for nonlinear ill-posed problems Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology (Proc. Int. Workshop on Inverse Problems, HoChiMinh City, Vietnam, Jan. 1995) ed Dang Dinh Ang et al (Hanoi: Vietnam Mathematical Society) pp 158-69
-
(1995)
Inverse Problems and Applications to Geophysics, Industry, Medicine and Technology
, pp. 158-169
-
-
Tantenhahn, U.1
|