메뉴 건너뛰기




Volumn 49, Issue 4, 2010, Pages 1770-1778

A nonlinear probabilistic method for process monitoring

Author keywords

[No Author keywords available]

Indexed keywords

FAULT DIAGNOSIS; GENERATIVE TOPOGRAPHIC MAPPING; LINEAR PROCESS; MONITORING PERFORMANCE; NONLINEAR PROCESS; PROBABILISTIC METHODS;

EID: 77649153368     PISSN: 08885885     EISSN: 15205045     Source Type: Journal    
DOI: 10.1021/ie900858v     Document Type: Article
Times cited : (9)

References (22)
  • 1
    • 0028483476 scopus 로고
    • Monitoring batch processes using multiway principal component analysis
    • Nomikos, P.; MacGregor, J. F. Monitoring batch processes using multiway principal component analysis. AIChEJ. 1994, 44, 1361-1375.
    • (1994) AIChEJ , vol.44 , pp. 1361-1375
    • Nomikos, P.1    MacGregor, J.F.2
  • 3
    • 0242354134 scopus 로고    scopus 로고
    • Statistical process monitoring: Basics and beyond
    • Qin, S. J. Statistical process monitoring: basics and beyond. J. Chemom. 2003, 17, 480-502.
    • (2003) J. Chemom , vol.17 , pp. 480-502
    • Qin, S.J.1
  • 4
    • 42149134815 scopus 로고    scopus 로고
    • Quality prediction based on phase-specific average trajectory for batch processes
    • Zhao, C. H.; Wang, F. L.; Mao, Z. H.; Lu, N. Y.; Jia, M. X. Quality prediction based on phase-specific average trajectory for batch processes. AIChE J. 2008, 54, 693-705.
    • (2008) AIChE J , vol.54 , pp. 693-705
    • Zhao, C.H.1    Wang, F.L.2    Mao, Z.H.3    Lu, N.Y.4    Jia, M.X.5
  • 5
    • 54949117106 scopus 로고    scopus 로고
    • Diagnosis of process faults in chemical systems using a local partial least squares approach
    • Kruger, U.; Dimitriadis, G. Diagnosis of process faults in chemical systems using a local partial least squares approach. AIChE J. 2008, 54, 2581-2596.
    • (2008) AIChE J , vol.54 , pp. 2581-2596
    • Kruger, U.1    Dimitriadis, G.2
  • 6
    • 0041530045 scopus 로고    scopus 로고
    • Process monitoring based on probabilistic PCA
    • Kim, D. S.; Lee, I. B. Process monitoring based on probabilistic PCA. Chem Intell. Lab. Syst. 2003, 67, 109-123.
    • (2003) Chem Intell. Lab. Syst , vol.67 , pp. 109-123
    • Kim, D.S.1    Lee, I.B.2
  • 7
    • 33646177719 scopus 로고    scopus 로고
    • Calibration, prediction and process monitoring model based on factor analysis for incomplete process data
    • Kim, D. S.; Yoo, C. K; Kim, Y. I.; Jung, J. K.; Lee, I. B. Calibration, prediction and process monitoring model based on factor analysis for incomplete process data. J. Chem. Eng. Jpn. 2005, 38, 1025-1034.
    • (2005) J. Chem. Eng. Jpn , vol.38 , pp. 1025-1034
    • Kim, D.S.1    Yoo, C.K.2    Kim, Y.I.3    Jung, J.K.4    Lee, I.B.5
  • 8
    • 60249095677 scopus 로고    scopus 로고
    • Probabilistic contribution analysis for statistical process monitoring: A missing variable approach
    • Chen, T.; Sun, Y. Probabilistic contribution analysis for statistical process monitoring: A missing variable approach. Control Eng. Pract. 2009, 17, 469-477.
    • (2009) Control Eng. Pract , vol.17 , pp. 469-477
    • Chen, T.1    Sun, Y.2
  • 9
    • 67249116501 scopus 로고    scopus 로고
    • A novel statistical-based monitoring approach for complex multivariate processes
    • Ge, Z. Q.; Xie, L.; Song, Z. H. A novel statistical-based monitoring approach for complex multivariate processes. Ind. Eng. Chem. Res. 2009, 48, 4892-4898.
    • (2009) Ind. Eng. Chem. Res , vol.48 , pp. 4892-4898
    • Ge, Z.Q.1    Xie, L.2    Song, Z.H.3
  • 10
    • 0043015539 scopus 로고    scopus 로고
    • Nonlinear principal component analysisbased on principal curves and neural networks
    • Dong, D.; McAvoy, T. J. Nonlinear principal component analysisbased on principal curves and neural networks. Comput. Chem. Eng. 1996, 20, 65-78.
    • (1996) Comput. Chem. Eng , vol.20 , pp. 65-78
    • Dong, D.1    McAvoy, T.J.2
  • 12
    • 10244238854 scopus 로고    scopus 로고
    • Fault identification for process monitoring using kernel principal component analysis
    • Cho, J. H.; Lee, J. M.; Choi, S. W.; Lee, D. W.; Lee, I. B. Fault identification for process monitoring using kernel principal component analysis. Chem. Eng. Sci. 2005, 60, 279-288.
    • (2005) Chem. Eng. Sci , vol.60 , pp. 279-288
    • Cho, J.H.1    Lee, J.M.2    Choi, S.W.3    Lee, D.W.4    Lee, I.B.5
  • 13
    • 11144331636 scopus 로고    scopus 로고
    • Fault detection and identification of nonlinear processes based on kernel PCA
    • Choi, S. W.; Lee, C. K.; Lee, J. M.; Park, J. H.; Lee, I. B. Fault detection and identification of nonlinear processes based on kernel PCA. Chem. Intell. Lab. Syst. 2005, 75, 55-67.
    • (2005) Chem. Intell. Lab. Syst , vol.75 , pp. 55-67
    • Choi, S.W.1    Lee, C.K.2    Lee, J.M.3    Park, J.H.4    Lee, I.B.5
  • 15
    • 63249084878 scopus 로고    scopus 로고
    • Improved kernel-PCA based monitoring approach for nonlinear processes
    • Ge, Z. Q.; Yang, C. J.; Song, Z. H. Improved kernel-PCA based monitoring approach for nonlinear processes. Chem. Eng. Sci. 2009, 64, 2245-2255.
    • (2009) Chem. Eng. Sci , vol.64 , pp. 2245-2255
    • Ge, Z.Q.1    Yang, C.J.2    Song, Z.H.3
  • 17
    • 27844544682 scopus 로고    scopus 로고
    • Generative topographic mapping applied to clustering and visualization of motor unit action potentials
    • Andrade, A. O.; Nasuto, S.; Kyberd, P.; Sweeney-Reed, C. M. Generative topographic mapping applied to clustering and visualization of motor unit action potentials. Biosystems 2005, 82, 273-284.
    • (2005) Biosystems , vol.82 , pp. 273-284
    • Andrade, A.O.1    Nasuto, S.2    Kyberd, P.3    Sweeney-Reed, C.M.4
  • 18
    • 32544451613 scopus 로고    scopus 로고
    • Robust analysis of MRS brain tumour data using t-GTM
    • Vellido, A.; Lisboa, P. J. G.; Vicente, D. Robust analysis of MRS brain tumour data using t-GTM. Neurocomputing 2006, 69, 754-768.
    • (2006) Neurocomputing , vol.69 , pp. 754-768
    • Vellido, A.1    Lisboa, P.J.G.2    Vicente, D.3
  • 19
    • 58449106238 scopus 로고    scopus 로고
    • Topological mappings for video and audio data
    • Fyfe, C.; Barbakh, W.; Ooi, W. C.; Ko, H. Topological mappings for video and audio data. Int. J. Neural Syst. 2008, 18, 481-489.
    • (2008) Int. J. Neural Syst , vol.18 , pp. 481-489
    • Fyfe, C.1    Barbakh, W.2    Ooi, W.C.3    Ko, H.4
  • 20
    • 60549112199 scopus 로고    scopus 로고
    • A method for extension of generative topographic mapping for fuzzy clustering
    • Bose, I.; Chen, X. A method for extension of generative topographic mapping for fuzzy clustering. J. Am. Soc. Inf. Sci. Technol. 2009, 60, 363-371.
    • (2009) J. Am. Soc. Inf. Sci. Technol , vol.60 , pp. 363-371
    • Bose, I.1    Chen, X.2
  • 21
    • 0347243182 scopus 로고    scopus 로고
    • Nonlinear component analysis as a kernel eignvalue problem
    • Schölkopf, B.; Smola, A. J.; Müller, K. Nonlinear component analysis as a kernel eignvalue problem. Neural Comput. 1998, 10, 1000-1016.
    • (1998) Neural Comput , vol.10 , pp. 1000-1016
    • Schölkopf, B.1    Smola, A.J.2    Müller, K.3
  • 22
    • 0027561446 scopus 로고
    • A plant-wide industrial process control problem
    • Downs, J. J.; Vogel, E. F. A plant-wide industrial process control problem. Comput. Chem. Eng. 1993, 17, 245-255.
    • (1993) Comput. Chem. Eng , vol.17 , pp. 245-255
    • Downs, J.J.1    Vogel, E.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.