-
2
-
-
0031166382
-
Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution
-
H. Brunner, A. Makroglou, and R.K. Miller, Mixed interpolation collocation methods for first and second order Volterra integro-differential equations with periodic solution, Appl. Numer. Math. 23 (1997), pp. 381-402.
-
(1997)
Appl. Numer. Math.
, vol.23
, pp. 381-402
-
-
Brunner, H.1
Makroglou, A.2
Miller, R.K.3
-
4
-
-
0012899160
-
Numerical solution of the Bagley-Torvik equation
-
K. Diethelm and N.J. Ford, Numerical solution of the Bagley-Torvik equation, BIT 42 (2002), pp. 490-507.
-
(2002)
BIT
, vol.42
, pp. 490-507
-
-
Diethelm, K.1
Ford, N.J.2
-
5
-
-
0031537729
-
Iterated solutions of linear operator equations with the Tau method
-
M.K. El-Daou and H.G. Khajah, Iterated solutions of linear operator equations with the Tau method, Math. Comp. 66 (1997), pp. 207-213.
-
(1997)
Math. Comp.
, vol.66
, pp. 207-213
-
-
El-Daou, M.K.1
Khajah, H.G.2
-
6
-
-
0037443341
-
Numerical solution of a class of Integro-Differential equations by the Tau Method with an error estimation
-
DOI 10.1016/S0096-3003(02)00081-4, PII S0096300302000814
-
S.M. Hosseini and S. Shahmorad, Numerical solution of a class of integro-differential equations by the Tau method with an error estimation, Appl. Math. Comp. 136 (2003), pp. 559-570. (Pubitemid 35276466)
-
(2003)
Applied Mathematics and Computation
, vol.136
, Issue.2-3
, pp. 559-570
-
-
Hosseini, S.M.1
Shahmorad, S.2
-
7
-
-
0037293897
-
Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases
-
DOI 10.1016/S0307-904X(02)00099-9, PII S0307904X02000999
-
S.M. Hosseini and S. Shahmorad, Tau numerical solution of Fredholm integro-differential equations with arbitrary polynomial bases, Appl. Math. Model. 27 (2003), pp. 145-154. (Pubitemid 36059507)
-
(2003)
Applied Mathematical Modelling
, vol.27
, Issue.2
, pp. 145-154
-
-
Hosseini, S.M.1
Shahmorad, S.2
-
8
-
-
0040714267
-
Interpolation correction for collocation solutions of Fredholm integro-defferential equations
-
Q. Hu, Interpolation correction for collocation solutions of Fredholm integro-differential equation, Math. Comp. 223 (1998), pp. 987-999. (Pubitemid 128382327)
-
(1998)
Mathematics of Computation
, vol.67
, Issue.223
, pp. 987-999
-
-
Hu, Q.1
-
9
-
-
48049097506
-
Approximate solution of Abel integral equation
-
L. Huang,Y. Huang, and X.-F. Li, Approximate solution of Abel integral equation, Comput. Math. Appl. 156 (2008), pp. 1748-1757.
-
(2008)
Comput. Math. Appl.
, vol.156
, pp. 1748-1757
-
-
Huang, L.1
Huang, Y.2
Li, X.-F.3
-
10
-
-
0042641466
-
Chebyshev series solution of linear Fredholm integro-differential equations
-
H. Koroglu, Chebyshev series solution of linear Fredholm integro-differential equations, Int. J. Math. Educ. Sci. Technol. 29 (1998), pp. 489-500.
-
(1998)
Int. J. Math. Educ. Sci. Technol.
, vol.29
, pp. 489-500
-
-
Koroglu, H.1
-
12
-
-
34547775142
-
Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion
-
X.-F. Li and M. Fang, Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion, Int. J. Comp. Math. 83 (2006), pp. 637-649.
-
(2006)
Int. J. Comp. Math.
, vol.83
, pp. 637-649
-
-
Li, X.-F.1
Fang, M.2
-
13
-
-
78449241111
-
A new Abel inversion by means of the integrals of an input function with noise
-
X.-F. Li, L. Huang, and Y. Huang, A new Abel inversion by means of the integrals of an input function with noise, J. Phys. A: Math. Theor. 40 (2007), pp. 347-360.
-
(2007)
J. Phys. A: Math. Theor.
, vol.40
, pp. 347-360
-
-
Li, X.-F.1
Huang, L.2
Huang, Y.3
-
14
-
-
25644449925
-
A Taylor polynomial approach for solving high-order linear Fredholm integrodifferential equations
-
S. Nas, S.Yalcinbas, and M. Sezer, A Taylor polynomial approach for solving high-order linear Fredholm integrodifferential equations, Int. J. Math. Educ. Sci. Technol. 31 (2000), pp. 213-225.
-
(2000)
Int. J. Math. Educ. Sci. Technol.
, vol.31
, pp. 213-225
-
-
Nas, S.1
Yalcinbas, S.2
Sezer, M.3
-
15
-
-
0037809668
-
Numerical solution of a special type of integro-differential equations
-
M.T. Rashed, Numerical solution of a special type of integro-differential equations, Appl. Math. Comp. 143 (2003), pp. 73-88.
-
(2003)
Appl. Math. Comp.
, vol.143
, pp. 73-88
-
-
Rashed, M.T.1
-
16
-
-
0033353533
-
A simple Taylor-series expansion method for a class of sencond kind integral equations
-
Y. Ren, B. Zhang, and H. Qiao, A simple Taylor-series expansion method for a class of sencond kind integral equations, J. Comp. Appl. Math. 110 (1999), pp. 15-24.
-
(1999)
J. Comp. Appl. Math.
, vol.110
, pp. 15-24
-
-
Ren, Y.1
Zhang, B.2
Qiao, H.3
-
17
-
-
36048937303
-
A new method for determining the solution of Riccati differential equations
-
B.-Q. Tang and X.-F. Li, A new method for determining the solution of Riccati differential equations, Appl. Math. Comp. 194 (2007), pp. 431-440.
-
(2007)
Appl. Math. Comp.
, vol.194
, pp. 431-440
-
-
Tang, B.-Q.1
Li, X.-F.2
-
18
-
-
0023842475
-
The iterated Galerkin methods for linear integro-differential equations
-
W. Volk, The iterated Galerkin methods for linear integro-differential equations, J Comp. Appl. Math. 21 (1988), pp. 63-74.
-
(1988)
J Comp. Appl. Math.
, vol.21
, pp. 63-74
-
-
Volk, W.1
-
19
-
-
0000992795
-
The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials
-
S. Yalcinbas and M. Sezer, The approximate solution of high-order linear Volterra-Fredholm integro-differential equations in terms of Taylor polynomials, Appl. Math. Comp. 112 (2000), pp. 291-308.
-
(2000)
Appl. Math. Comp.
, vol.112
, pp. 291-308
-
-
Yalcinbas, S.1
Sezer, M.2
|