메뉴 건너뛰기




Volumn 83, Issue 8-9, 2006, Pages 637-649

Modified method for determining an approximate solution of the Fredholm-Volterra integral equations by Taylor's expansion

Author keywords

Approximate solution; Fredholm integral equation; Taylor's expansion; Volterra integral equation; Weakly singular kernel

Indexed keywords

LINEAR EQUATIONS; NUMERICAL METHODS; POLYNOMIALS; TAYLOR SERIES;

EID: 34547775142     PISSN: 00207160     EISSN: 10290265     Source Type: Journal    
DOI: 10.1080/00207160600988524     Document Type: Article
Times cited : (7)

References (14)
  • 1
    • 0017478239 scopus 로고
    • Sources and applications of integral equations
    • Lonseth, A.T., 1977, Sources and applications of integral equations. SIAM Reviews, 19, 241-278.
    • (1977) SIAM Reviews , vol.19 , pp. 241-278
    • Lonseth, A.T.1
  • 6
    • 0039658104 scopus 로고    scopus 로고
    • Two methods for solving integral equations
    • Wazwaz, A.M. and Khuri, S.A., 1996, Two methods for solving integral equations. Appl, Math. Comp., 77, 79-89.
    • (1996) Appl, Math. Comp , vol.77 , pp. 79-89
    • Wazwaz, A.M.1    Khuri, S.A.2
  • 7
    • 0000992795 scopus 로고    scopus 로고
    • The approximate solution of high-order linear Volterra-Fredholm integrodifferential equations in terms of Taylor polynomials
    • Yalcinbas, S. and Sezer, M., 2000, The approximate solution of high-order linear Volterra-Fredholm integrodifferential equations in terms of Taylor polynomials. Appl. Math. Comp., 112, 291-308.
    • (2000) Appl. Math. Comp , vol.112 , pp. 291-308
    • Yalcinbas, S.1    Sezer, M.2
  • 8
    • 27944433953 scopus 로고    scopus 로고
    • A Taylor collocation method for the solution of linear integro-differential equations
    • Karamete, A. and Sezer, M., 2002, A Taylor collocation method for the solution of linear integro-differential equations. Int. J. Comp. Math, 79, 987-1000.
    • (2002) Int. J. Comp. Math , vol.79 , pp. 987-1000
    • Karamete, A.1    Sezer, M.2
  • 9
    • 0033353533 scopus 로고    scopus 로고
    • A simple Taylor-series expansion method for a class of second kink integral equations
    • Ren, Y., Zhang, B. and Qiao, H., 1999, A simple Taylor-series expansion method for a class of second kink integral equations. J. Comp. Appl. Math., 110, 15-24.
    • (1999) J. Comp. Appl. Math , vol.110 , pp. 15-24
    • Ren, Y.1    Zhang, B.2    Qiao, H.3
  • 10
    • 10644253497 scopus 로고    scopus 로고
    • Numerical solution, of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method
    • Maleknejad, K. and Aghazadeh, N., 2005, Numerical solution, of Volterra integral equations of the second kind with convolution kernel by using Taylor-series expansion method. Appl, Math. Comp., 161, 915-922.
    • (2005) Appl, Math. Comp , vol.161 , pp. 915-922
    • Maleknejad, K.1    Aghazadeh, N.2
  • 11
    • 0013586003 scopus 로고
    • Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solutions
    • Te Riele, H.J.J., 1982, Collocation methods for weakly singular second-kind Volterra integral equations with non-smooth solutions. IMA Journal of Numerical Analysis, 2, 437-449.
    • (1982) IMA Journal of Numerical Analysis , vol.2 , pp. 437-449
    • Te Riele, H.J.J.1
  • 12
    • 0008175028 scopus 로고    scopus 로고
    • A reliable technique for solving the weakly singular second-kind Volterratype integral equations
    • Wazwaz, A.M. and Khuri, S.A., 1996, A reliable technique for solving the weakly singular second-kind Volterratype integral equations. Appl. Math. Comp., 77, 287-299.
    • (1996) Appl. Math. Comp , vol.77 , pp. 287-299
    • Wazwaz, A.M.1    Khuri, S.A.2
  • 13
    • 0010378782 scopus 로고
    • The electrostatic field of two equal circular co-axial conducting discs
    • Love, E.R., 1949, The electrostatic field of two equal circular co-axial conducting discs. Q. J. Mech. Appl. Math, 2, 428-451.
    • (1949) Q. J. Mech. Appl. Math , vol.2 , pp. 428-451
    • Love, E.R.1
  • 14
    • 84966214033 scopus 로고
    • Linear multistep methods for Volterra integral and integrodifferential equations
    • van der Houwen, P.J. and te Riele, H.J.J., 1985, Linear multistep methods for Volterra integral and integrodifferential equations. Math, Comp., 45, 439-461.
    • (1985) Math, Comp , vol.45 , pp. 439-461
    • van der Houwen, P.J.1    te Riele, H.J.J.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.