메뉴 건너뛰기




Volumn 5212 LNAI, Issue PART 2, 2008, Pages 154-169

Mixed bregman clustering with approximation guarantees

Author keywords

[No Author keywords available]

Indexed keywords

DATABASE SYSTEMS; FLOW OF SOLIDS; LEARNING SYSTEMS; POLYNOMIAL APPROXIMATION; ROBOT LEARNING;

EID: 56049127972     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-540-87481-2_11     Document Type: Conference Paper
Times cited : (31)

References (15)
  • 3
    • 0035370926 scopus 로고    scopus 로고
    • Relative loss bounds for on-line density estimation with the exponential family of distributions
    • Azoury, K.S., Warmuth, M.K.: Relative loss bounds for on-line density estimation with the exponential family of distributions. Machine Learning Journal 43(3). 211-246 (2001)
    • (2001) Machine Learning Journal , vol.43 , Issue.3 , pp. 211-246
    • Azoury, K.S.1    Warmuth, M.K.2
  • 4
    • 23744473964 scopus 로고    scopus 로고
    • On the optimality of conditional expectation as a Bregman predictor
    • Banerjee. A., Guo. X., Wang. H.: On the optimality of conditional expectation as a Bregman predictor. IEEE Trans. on Information Theory 51, 2664-2669 (2005)
    • (2005) IEEE Trans. on Information Theory , vol.51 , pp. 2664-2669
    • Banerjee, A.1    Guo, X.2    Wang, H.3
  • 6
    • 49949144765 scopus 로고    scopus 로고
    • Bregman. L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR. Comp. Math, and Math. Phys. 7, 200-217 (1967)
    • Bregman. L.M.: The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. USSR. Comp. Math, and Math. Phys. 7, 200-217 (1967)
  • 9
    • 85013932278 scopus 로고    scopus 로고
    • Deza. E.. Deza, M.-M.: Dictionary of distances. Elsevier, Amsterdam (2006)
    • Deza. E.. Deza, M.-M.: Dictionary of distances. Elsevier, Amsterdam (2006)
  • 10
    • 0344875562 scopus 로고    scopus 로고
    • The robustness of the p-norm algorithms
    • Gentile, C.: The robustness of the p-norm algorithms. Machine Learning Journal 53(3), 265-299 (2003)
    • (2003) Machine Learning Journal , vol.53 , Issue.3 , pp. 265-299
    • Gentile, C.1
  • 11
    • 0020102027 scopus 로고
    • Least squares quantization in PCM
    • Lloyd, S.: Least squares quantization in PCM. IEEE Trans, on Information Theory 28, 129-136 (1982)
    • (1982) IEEE Trans, on Information Theory , vol.28 , pp. 129-136
    • Lloyd, S.1
  • 13
    • 33646435539 scopus 로고    scopus 로고
    • Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M.. Torgo, L. (eds.) ECML 2005. LNCS (LNAI), 3720, pp. 649-656. Springer, Heidelberg (2005)
    • Nock, R., Nielsen, F.: Fitting the smallest enclosing Bregman ball. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M.. Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 649-656. Springer, Heidelberg (2005)
  • 15
    • 0036494120 scopus 로고    scopus 로고
    • The centroid of the symmetrical Kullback-Leibler distance
    • Veldhuis, R.: The centroid of the symmetrical Kullback-Leibler distance. IEEE Signal Processing Letters 9, 96-99 (2002)
    • (2002) IEEE Signal Processing Letters , vol.9 , pp. 96-99
    • Veldhuis, R.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.