메뉴 건너뛰기




Volumn 21, Issue 1-2, 2010, Pages 57-75

Counter propagation artificial neural network categorical models for prediction of carcinogenicity for non-congeneric chemicals

Author keywords

Carcinogenicity; Categorical models; CP ANN; QSAR; REACH; ROC

Indexed keywords

COMPUTATIONAL CHEMISTRY; FORECASTING; INDICATORS (CHEMICAL); INDUSTRIAL CHEMICALS;

EID: 77951430265     PISSN: 1062936X     EISSN: 1029046X     Source Type: Journal    
DOI: 10.1080/10629360903563250     Document Type: Article
Times cited : (17)

References (74)
  • 1
    • 50649118591 scopus 로고    scopus 로고
    • Hail Caesar
    • N. Price, Hail Caesar, Chem. Ind. 15 (2008), pp. 18-19. Available at http://www.caesar-project.eu/index.php?page1/4results§ion1/4results2
    • (2008) Chem. Ind , vol.15 , pp. 18-19
    • Price, N.1
  • 2
    • 0037480748 scopus 로고    scopus 로고
    • Putting the predictive toxicology challenge into perspective: Reflections on the results
    • R. Benigni and A. Giuliani, Putting the predictive toxicology challenge into perspective: reflections on the results, Bioinformatics 19 (2003), pp. 1194-1200.
    • (2003) Bioinformatics , vol.19 , pp. 1194-1200
    • Benigni, R.1    Giuliani, A.2
  • 3
    • 0036491315 scopus 로고    scopus 로고
    • AI and SAR approaches for predicting chemical carcinogenicity: Survey and status report
    • A.M. Richard and R. Benigni, AI and SAR approaches for predicting chemical carcinogenicity: survey and status report, SAR QSAR Environ. Res. 13 (2002), pp. 1-19.
    • (2002) SAR QSAR Environ. Res , vol.13 , pp. 1-19
    • Richard, A.M.1    Benigni, R.2
  • 4
    • 0142088806 scopus 로고    scopus 로고
    • Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity
    • G. Patlewicz, R. Rodford, and J.D. Walker, Quantitative structure-activity relationships for predicting mutagenicity and carcinogenicity, Environ. Toxicol. Chem. 22 (2003), pp. 1885-1893.
    • (2003) Environ. Toxicol. Chem , vol.22 , pp. 1885-1893
    • Patlewicz, G.1    Rodford, R.2    Walker, J.D.3
  • 9
    • 0033217369 scopus 로고    scopus 로고
    • Predictive carcinogenicity: A model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network
    • G. Gini, M. Lorenzini, E. Benfenati, P. Grasso, and M. Bruschi, Predictive carcinogenicity: a model for aromatic compounds, with nitrogen-containing substituents, based on molecular descriptors using an artificial neural network, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 1076-1080.
    • (1999) J. Chem. Inf. Comput. Sci , vol.39 , pp. 1076-1080
    • Gini, G.1    Lorenzini, M.2    Benfenati, E.3    Grasso, P.4    Bruschi, M.5
  • 10
    • 1842639169 scopus 로고    scopus 로고
    • ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases
    • G. Klopman, S.K. Chakravarti, H. Zhu, J.M. Ivanov, and R.D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases, J. Chem. Inf. Comput. Sci. 44 (2004), pp. 704-715.
    • (2004) J. Chem. Inf. Comput. Sci , vol.44 , pp. 704-715
    • Klopman, G.1    Chakravarti, S.K.2    Zhu, H.3    Ivanov, J.M.4    Saiakhov, R.D.5
  • 11
    • 84904043359 scopus 로고    scopus 로고
    • MC4PC - An artificial intelligence approach to the discovery of quantitative structure-toxic activity relationship
    • Helma, ed., CRC Press, Boca Raton, FL
    • G. Klopman, J. Ivanov, R. Saiakhov, and S. Chakravarti, MC4PC - An artificial intelligence approach to the discovery of quantitative structure-toxic activity relationship, in Predictive Toxicology, C. Helma, ed., CRC Press, Boca Raton, FL, 2005, pp. 423-457.
    • (2005) Predictive Toxicology, C , pp. 423-457
    • Klopman, G.1    Ivanov, J.2    Saiakhov, R.3    Chakravarti, S.4
  • 12
    • 0032458218 scopus 로고    scopus 로고
    • A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASEQSAR-ES software
    • E.J. Matthews and J.F. Contrera, A new highly specific method for predicting the carcinogenic potential of pharmaceuticals in rodents using enhanced MCASEQSAR-ES software, Regul. Toxicol. Pharmacol. 28 (1998), pp. 242-264.
    • (1998) Regul. Toxicol. Pharmacol , vol.28 , pp. 242-264
    • Matthews, E.J.1    Contrera, J.F.2
  • 13
    • 84987846067 scopus 로고    scopus 로고
    • OncoLogic: A mechanism-based expert system for predicting the carcinogenic potential of chemicals
    • C. Helma, ed., CRC Press, Boca Raton, FL
    • Y.T. Woo and D.Y. Lai, OncoLogic: A mechanism-based expert system for predicting the carcinogenic potential of chemicals, in Predictive Toxicology, C. Helma, ed., CRC Press, Boca Raton, FL, 2005, pp. 385-413.
    • (2005) Predictive Toxicology , pp. 385-413
    • Woo, Y.T.1    Lai, D.Y.2
  • 15
    • 0030941637 scopus 로고    scopus 로고
    • Computational predictive programs (expert systems) in toxicology
    • E. Benfenati and G. Gini, Computational predictive programs (expert systems) in toxicology, Toxicology 119 (1997), pp. 213-225.
    • (1997) Toxicology , vol.119 , pp. 213-225
    • Benfenati, E.1    Gini, G.2
  • 16
    • 0031698019 scopus 로고    scopus 로고
    • Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity
    • R. Benigni and A.M. Richard, Quantitative structure-based modeling applied to characterization and prediction of chemical toxicity, Methods 14 (1998), pp. 264-276.
    • (1998) Methods , vol.14 , pp. 264-276
    • Benigni, R.1    Richard, A.M.2
  • 17
    • 0032565550 scopus 로고    scopus 로고
    • Structure-based methods for predicting mutagenicity and carcinogenicity: Are we there yet?
    • A.M. Richard, Structure-based methods for predicting mutagenicity and carcinogenicity: are we there yet?, Mutat. Res. 400 (1998), pp. 493-507.
    • (1998) Mutat. Res , vol.400 , pp. 493-507
    • Richard, A.M.1
  • 18
    • 0242624535 scopus 로고    scopus 로고
    • Prediction the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices
    • J.F. Contrera, E.J. Matthews, and R.D. Benz, Prediction the carcinogenic potential of pharmaceuticals in rodents using molecular structural similarity and E-state indices, Regul. Toxicol. Pharmacol. 38 (2003), pp. 243-259.
    • (2003) Regul. Toxicol. Pharmacol , vol.38 , pp. 243-259
    • Contrera, J.F.1    Matthews, E.J.2    Benz, R.D.3
  • 19
    • 0022272085 scopus 로고
    • Computer-assisted mechanistic structure-activity studies: Application to diverse classes of chemical carcinogens
    • G.H. Loew, M. Poulsen, E. Kirkjian, J. Ferrell, B.S. Sudhindra, and M. Rebagliati, Computer-assisted mechanistic structure-activity studies: application to diverse classes of chemical carcinogens, Environ. Health. Perspect. 61 (1985), pp. 69-96.
    • (1985) Environ. Health. Perspect , vol.61 , pp. 69-96
    • Loew, G.H.1    Poulsen, M.2    Kirkjian, E.3    Ferrell, J.4    Sudhindra, B.S.5    Rebagliati, M.6
  • 23
    • 0028548272 scopus 로고
    • Predicting carcinogenicity of polycyclic aromatic hydrocarbons from back-propagation neural network
    • D. Villemin, D. Cherqaoui, and A. Mesbah, Predicting carcinogenicity of polycyclic aromatic hydrocarbons from back-propagation neural network, J. Chem. Inf. Comput. Sci. 34 (1994), pp. 1288-1293.
    • (1994) J. Chem. Inf. Comput. Sci , vol.34 , pp. 1288-1293
    • Villemin, D.1    Cherqaoui, D.2    Mesbah, A.3
  • 24
    • 0030569257 scopus 로고    scopus 로고
    • QSARS of mutagens and carcinogens: Two case studies illustrating problems in the construction of models for non-congeneric chemicals
    • R. Benigni and A.M. Richard, QSARS of mutagens and carcinogens: two case studies illustrating problems in the construction of models for non-congeneric chemicals, Mutat. Res. 371 (1996), pp. 29-46.
    • (1996) Mutat. Res , vol.371 , pp. 29-46
    • Benigni, R.1    Richard, A.M.2
  • 25
    • 0031268730 scopus 로고    scopus 로고
    • A Study of structure-carcinogenic potency relationship with artificial neural networks. The using of descriptors related to geometrical and electronic structures
    • M. Vračko, A Study of structure-carcinogenic potency relationship with artificial neural networks. The using of descriptors related to geometrical and electronic structures, J. Chem. Inf. Comput. Sci. 37 (1997), pp. 1037-1043.
    • (1997) J. Chem. Inf. Comput. Sci , vol.37 , pp. 1037-1043
    • Vračko, M.1
  • 27
    • 33748242731 scopus 로고
    • Neural networks in chemistry
    • J. Gasteiger and J. Zupan, Neural networks in chemistry, Angew. Chem. Int. Ed. 32 (1993), pp. 503-527.
    • (1993) Angew. Chem. Int. Ed , vol.32 , pp. 503-527
    • Gasteiger, J.1    Zupan, J.2
  • 28
    • 0042755340 scopus 로고
    • QSAR and neural networks in life sciences
    • D.A. Winkler and D.J. Madellena, QSAR and neural networks in life sciences, Ser. Math. Biol. Med. 5 (1995), pp. 126-163.
    • (1995) Ser. Math. Biol. Med , vol.5 , pp. 126-163
    • Winkler, D.A.1    Madellena, D.J.2
  • 30
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • G. Schneider and P. Wrede, Artificial neural networks for computer-based molecular design, Prog. Biophys. Mol. Biol. 70 (1998), pp. 175-222.
    • (1998) Prog. Biophys. Mol. Biol , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 32
    • 0033970811 scopus 로고    scopus 로고
    • Neural networks are useful tools for drug design
    • G. Schneider, Neural networks are useful tools for drug design, Neural Networks 13 (2000), pp. 15-16.
    • (2000) Neural Networks , vol.13 , pp. 15-16
    • Schneider, G.1
  • 33
    • 0042884387 scopus 로고    scopus 로고
    • Hierarchy neural networks as applied to pharmaceutical problems
    • H. Ichikawa, Hierarchy neural networks as applied to pharmaceutical problems, Adv. Drug. Delivery. Rev. 55 (2003), pp. 1119-1147.
    • (2003) Adv. Drug. Delivery. Rev , vol.55 , pp. 1119-1147
    • Ichikawa, H.1
  • 35
    • 0031735526 scopus 로고    scopus 로고
    • Artificial neural networks for computer-based molecular design
    • G. Schneider and P. Wrede, Artificial neural networks for computer-based molecular design, Prog. Biophys. Mol. Biol. 70 (1998), pp. 175-222.
    • (1998) Prog. Biophys. Mol. Biol , vol.70 , pp. 175-222
    • Schneider, G.1    Wrede, P.2
  • 36
    • 0043235835 scopus 로고    scopus 로고
    • Prediction of physicochemical properties based on neural network modeling
    • J. Taskinen and J. Yliruusi, Prediction of physicochemical properties based on neural network modeling, Adv. Drug. Delivery Rev. 55 (2003), pp. 1163-1183.
    • (2003) Adv. Drug. Delivery Rev , vol.55 , pp. 1163-1183
    • Taskinen, J.1    Yliruusi, J.2
  • 37
    • 85195059324 scopus 로고    scopus 로고
    • CAESAR project web page, 2009
    • CAESAR project web page, 2009. Available at http://www.caesar-project.eu
  • 38
    • 85195092240 scopus 로고    scopus 로고
    • Distributed Structure-Searchable Toxicity (DSSTox)
    • Distributed Structure-Searchable Toxicity (DSSTox) Public Database Network. Available at http://www.epa.gov/ncct/dsstox/sdf_cpdbas.html
    • Public Database Network
  • 39
    • 85195051194 scopus 로고    scopus 로고
    • Lois Gold Carcinogenic Potency Database (CPDB)
    • Lois Gold Carcinogenic Potency Database (CPDB). Available at http://potency.berkeley.edu/ cpdb.html
  • 40
    • 57349180719 scopus 로고    scopus 로고
    • Integrated decision-tree testing strategies for mutagenicity and carcinogenicity with respect to the requirements of the EU REACH legislation
    • R. Combes, C. Grindon, M.T. Cronin, D.W. Roberts, and J.F. Garrod, Integrated decision-tree testing strategies for mutagenicity and carcinogenicity with respect to the requirements of the EU REACH legislation, ATLA 36 (2008), pp. 43-63.
    • (2008) ATLA , vol.36 , pp. 43-63
    • Combes, R.1    Grindon, C.2    Cronin, M.T.3    Roberts, D.W.4    Garrod, J.F.5
  • 45
    • 33745309231 scopus 로고    scopus 로고
    • CODESSA PRO User's Manual, 2005. Available at http://www.codessa-pro.com/manuals/ manual.html
    • (2005) CODESSA PRO User's Manual
  • 46
    • 85195082294 scopus 로고    scopus 로고
    • MDL Information Systems Inc., 14600 Catalina St., San Leonardo, CA 94577, USA, software
    • MDL-QSAR version 2.2, MDL Information Systems Inc., 14600 Catalina St., San Leonardo, CA 94577, USA, 2002-2004; software available at http://www.drugdiscoveryonline.com/ storefronts/mdl.html
    • (2002) MDL-QSAR Version 2.2
  • 47
    • 77951471024 scopus 로고    scopus 로고
    • DRAGON home page. Available at http://www.talete.mi.it/products/dragon_description.html
    • DRAGON Home Page
  • 48
    • 0004051470 scopus 로고    scopus 로고
    • M.V. Diudea (ed.), Nova Science Publishers, Huntington, New York
    • M.V. Diudea (ed.), QSPR/QSAR Studies by Molecular Descriptors, Nova Science Publishers, Huntington, New York, 2001.
    • (2001) QSPR/QSAR Studies By Molecular Descriptors
  • 49
    • 0001866630 scopus 로고    scopus 로고
    • On characterization of 3D molecular structures
    • A.T. Balaban, ed., Plenum Press, New York
    • M. Randić and M. Razinger, On characterization of 3D molecular structures, in From Chemical Topology to Three-Dimensional Geometry, A.T. Balaban, ed., Plenum Press, New York, 1997, pp. 159-236.
    • (1997) From Chemical Topology to Three-Dimensional Geometry , pp. 159-236
    • Randić, M.1    Razinger, M.2
  • 51
    • 0031455964 scopus 로고    scopus 로고
    • Improved variable selection procedure for multivariate linear regression
    • A.D. Walmsley, Improved variable selection procedure for multivariate linear regression, Anal. Chim. Acta 354 (1997), pp. 225-232.
    • (1997) Anal. Chim. Acta , vol.354 , pp. 225-232
    • Walmsley, A.D.1
  • 52
    • 0036839633 scopus 로고    scopus 로고
    • Variable selection for structural models
    • Y. Kano, Variable selection for structural models, J. Stat. Plan. Infer. 108 (2002), pp. 173-187.
    • (2002) J. Stat. Plan. Infer , vol.108 , pp. 173-187
    • Kano, Y.1
  • 53
    • 1842680821 scopus 로고    scopus 로고
    • Variable selection bias in regression trees with constant fits
    • Y.S. Shih and H.W. Tsai, Variable selection bias in regression trees with constant fits, Comput. Stat. Data. Anal. 45 (2004), pp. 595-607.
    • (2004) Comput. Stat. Data. Anal , vol.45 , pp. 595-607
    • Shih, Y.S.1    Tsai, H.W.2
  • 54
    • 0040888006 scopus 로고    scopus 로고
    • A new efficient approach for variable selection based on multiregression: Prediction of gas chromatographic retention times and response factors
    • B. Lucić, N. Trinajstić, S. Sild, M. Karelson, and A.R. Katritzky, A new efficient approach for variable selection based on multiregression: prediction of gas chromatographic retention times and response factors, J. Chem. Inf. Comput. Sci. 39 (1999), pp. 610-621.
    • (1999) J. Chem. Inf. Comput. Sci , vol.39 , pp. 610-621
    • Lucić, B.1    Trinajstić, N.2    Sild, S.3    Karelson, M.4    Katritzky, A.R.5
  • 55
    • 0000481568 scopus 로고    scopus 로고
    • Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationships studies
    • C.L. Waller and M.P. Bradley, Development and validation of a novel variable selection technique with application to multidimensional quantitative structure-activity relationships studies, J. Chem. Comput. Sci. 39 (1999), pp. 345-355.
    • (1999) J. Chem. Comput. Sci , vol.39 , pp. 345-355
    • Waller, C.L.1    Bradley, M.P.2
  • 56
    • 0000378338 scopus 로고    scopus 로고
    • Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle
    • W. Zheng and A. Tropsha, Novel variable selection quantitative structure-property relationship approach based on the k-nearest-neighbor principle, J. Chem. Comput. Sci. 40 (2000), pp. 185-194.
    • (2000) J. Chem. Comput. Sci , vol.40 , pp. 185-194
    • Zheng, W.1    Tropsha, A.2
  • 57
    • 0037427759 scopus 로고    scopus 로고
    • Comparison of different partial least-squares methods in quantitative structure-activity relationships
    • K. Tang and T. Li, Comparison of different partial least-squares methods in quantitative structure-activity relationships, Anal. Chim. Acta 476 (2003), pp. 85-92.
    • (2003) Anal. Chim. Acta , vol.476 , pp. 85-92
    • Tang, K.1    Li, T.2
  • 58
    • 0035914576 scopus 로고    scopus 로고
    • Comparison of different methods for variable selection
    • L. Xu and W.J. Zhang, Comparison of different methods for variable selection, Anal. Chim. Acta 446 (2001), pp. 475-481.
    • (2001) Anal. Chim. Acta , vol.446 , pp. 475-481
    • Xu, L.1    Zhang, W.J.2
  • 59
    • 0032562940 scopus 로고    scopus 로고
    • Variable selection for neural networks in multivariate calibration
    • F. Despagne and D.L. Massart, Variable selection for neural networks in multivariate calibration, Chemom. Intell. Lab. Syst. 40 (1998), pp. 145-163.
    • (1998) Chemom. Intell. Lab. Syst , vol.40 , pp. 145-163
    • Despagne, F.1    Massart, D.L.2
  • 60
    • 0034061686 scopus 로고    scopus 로고
    • Variable selection using neural-network models
    • G. Castellano and A.M. Fanelli, Variable selection using neural-network models, Neurocomputing 31 (2000), pp. 1-13.
    • (2000) Neurocomputing , vol.31 , pp. 1-13
    • Castellano, G.1    Fanelli, A.M.2
  • 61
    • 0035914572 scopus 로고    scopus 로고
    • Variable selection in classification of environmental soil samples for partial least square and neural network models
    • Z. Ramadan, X.H. Song, P.K. Hopke, M.J. Johnson, and K.M. Scow, Variable selection in classification of environmental soil samples for partial least square and neural network models, Anal. Chim. Acta 44 (2001), pp. 231-242.
    • (2001) Anal. Chim. Acta , vol.44 , pp. 231-242
    • Ramadan, Z.1    Song, X.H.2    Hopke, P.K.3    Johnson, M.J.4    Scow, K.M.5
  • 62
    • 0035438386 scopus 로고    scopus 로고
    • Toward an optimal procedure for variable selection and QSAR model building
    • A. Yasri and D. Hartsough, Toward an optimal procedure for variable selection and QSAR model building, J. Chem. Comput. Sci. 45 (2001), pp. 1218-1227.
    • (2001) J. Chem. Comput. Sci , vol.45 , pp. 1218-1227
    • Yasri, A.1    Hartsough, D.2
  • 63
    • 0030737774 scopus 로고    scopus 로고
    • Kohonen and counterpropagation artificial neural networks in analytical chemistry
    • J. Zupan, M. Novič, and I. Ruisanchez, Kohonen and counterpropagation artificial neural networks in analytical chemistry, Chemom. Intell. Lab. Syst. 38 (1997), pp. 1-23.
    • (1997) Chemom. Intell. Lab. Syst , vol.38 , pp. 1-23
    • Zupan, J.1    Novič, M.2    Ruisanchez, I.3
  • 65
    • 85195105721 scopus 로고    scopus 로고
    • National Institute of Chemistry, Ljubljana, Slovenia; software
    • AnnToolbox for Windows, National Institute of Chemistry, Ljubljana, Slovenia; software available at http://www.ki.si/en/display-pages/equipment/?tx_ukki_pi1%5Buid%5D1/4318&cHash1/4e267f7b447
    • AnnToolbox For Windows
  • 66
    • 0018424479 scopus 로고
    • Describing the validity of carcinogen screening test
    • J.A. Cooper, R. Saracci, and P. Cole, Describing the validity of carcinogen screening test, Br. J. Cancer. 39 (1979), pp. 87-89.
    • (1979) Br. J. Cancer , vol.39 , pp. 87-89
    • Cooper, J.A.1    Saracci, R.2    Cole, P.3
  • 67
    • 33646023117 scopus 로고    scopus 로고
    • An introduction to ROC analysis, Pattern Recognit
    • T. Fawcett, An introduction to ROC analysis, Pattern Recognit. Lett. 27 (2006), pp. 861-874.
    • (2006) Lett , vol.27 , pp. 861-874
    • Fawcett, T.1
  • 68
    • 33645471168 scopus 로고    scopus 로고
    • Understanding receiver operating characteristic (ROC) curves
    • J. Fan, S. Upadhye, and A. Worster, Understanding receiver operating characteristic (ROC) curves, Can. J. Emerg. Med. 8 (2006), pp. 19-20.
    • (2006) Can. J. Emerg. Med , vol.8 , pp. 19-20
    • Fan, J.1    Upadhye, S.2    Worster, A.3
  • 71
    • 0023890867 scopus 로고
    • Measuring the accuracy of diagnostic systems
    • J.A. Swets, Measuring the accuracy of diagnostic systems, Science 240 (1988), pp. 1285-1293.
    • (1988) Science , vol.240 , pp. 1285-1293
    • Swets, J.A.1
  • 72
    • 0031191630 scopus 로고    scopus 로고
    • The use of the area under the ROC curve in the evaluation of machine learning algorithms
    • A.P. Bradley, The use of the area under the ROC curve in the evaluation of machine learning algorithms, Pattern Recognit. 30 (1997), pp. 1145-1159.
    • (1997) Pattern Recognit , vol.30 , pp. 1145-1159
    • Bradley, A.P.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.