메뉴 건너뛰기




Volumn 39, Issue 6, 1999, Pages 1076-1080

Predictive Carcinogenicity: A Model for Aromatic Compounds, with Nitrogen-Containing Substituents, Based on Molecular Descriptors Using an Artificial Neural Network

Author keywords

[No Author keywords available]

Indexed keywords

CARCINOGEN; NITROGEN;

EID: 0033217369     PISSN: 00952338     EISSN: None     Source Type: Journal    
DOI: 10.1021/ci9903096     Document Type: Article
Times cited : (64)

References (18)
  • 1
    • 0029133355 scopus 로고
    • Assessing the Risk Assessment Paradigm
    • Omenn, G. S. Assessing the Risk Assessment Paradigm. Toxicology 1995, 102, 23-28.
    • (1995) Toxicology , vol.102 , pp. 23-28
    • Omenn, G.S.1
  • 2
    • 0030941637 scopus 로고    scopus 로고
    • Computational Predictive Programs (Expert Systems) in Toxicology
    • Benfenati, E.; Gini, G. Computational Predictive Programs (Expert Systems) in Toxicology. Toxicology 1997, 119, 213-225.
    • (1997) Toxicology , vol.119 , pp. 213-225
    • Benfenati, E.1    Gini, G.2
  • 6
    • 0028548272 scopus 로고
    • Predicting Carcinogenicity of Polycyclic Aromatic Hydrocarbons from Back-Propagation Neural Network
    • Villemin, D.; Cherqaoui, D.; Mesbash, A. Predicting Carcinogenicity of Polycyclic Aromatic Hydrocarbons from Back-Propagation Neural Network. J. Chem. Inf. Comput. Sci. 1994, 34, 1288-1293.
    • (1994) J. Chem. Inf. Comput. Sci. , vol.34 , pp. 1288-1293
    • Villemin, D.1    Cherqaoui, D.2    Mesbash, A.3
  • 7
    • 0030569257 scopus 로고    scopus 로고
    • QSARS of Mutagens and Carcinogens: Two Case Studies Illustrating Problems in the Construction of Models for Noncongeneric Chemicals
    • Benigni, R.; Richard, A. M. QSARS of Mutagens and Carcinogens: Two Case Studies Illustrating Problems in the Construction of Models for Noncongeneric Chemicals. Mutat. Res. 1996, 371, 29-46.
    • (1996) Mutat. Res. , vol.371 , pp. 29-46
    • Benigni, R.1    Richard, A.M.2
  • 8
    • 0031268730 scopus 로고    scopus 로고
    • A Study of Structure-Carcinogenic Potency Relationship with Artificial Neural Networks. the Using of Descriptors Related to Geometrical and Electronic Structures
    • Vracko, M. A Study of Structure-Carcinogenic Potency Relationship with Artificial Neural Networks. The Using of Descriptors Related to Geometrical and Electronic Structures. J. Chem. Inf. Comput. Sci. 1997, 37, 1037-1043.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 1037-1043
    • Vracko, M.1
  • 9
    • 0026342471 scopus 로고
    • The Carcinogenic Potency Database: Analyses of 4000 Chronic Animal Cancer Experiments Published in the General Literature and by the U.S. National Cancer Institute/National Toxicology Program
    • Gold, L. S.; Slone, T. H.; Manley, N. B.; Backman Garfinkel, G.; Hudes, E. S.; Rohrbach, L.; Ames, B. N. The Carcinogenic Potency Database: Analyses of 4000 Chronic Animal Cancer Experiments Published in the General Literature and by the U.S. National Cancer Institute/National Toxicology Program. Environ. Health Perspect. 1991, 96, 11-15.
    • (1991) Environ. Health Perspect. , vol.96 , pp. 11-15
    • Gold, L.S.1    Slone, T.H.2    Manley, N.B.3    Backman Garfinkel, G.4    Hudes, E.S.5    Rohrbach, L.6    Ames, B.N.7
  • 10
    • 85034126149 scopus 로고    scopus 로고
    • Expert Systems for Toxicity Prediction Based on Fragment Recognition: Evaluation of a Commercial System and Improved Approaches
    • Las Vegas, NV, Sep 8-12, Abstracts of paper, COMP
    • Benfenati, E.; Tichy, M.; Malvè, L.; Grasso, P.; Gini, G. Expert Systems for Toxicity Prediction Based on Fragment Recognition: Evaluation of a Commercial System and Improved Approaches; American Chemical Society Meeting, Las Vegas, NV, Sep 8-12, 1997; Abstracts of paper, COMP 136.
    • (1997) American Chemical Society Meeting , pp. 136
    • Benfenati, E.1    Tichy, M.2    Malvè, L.3    Grasso, P.4    Gini, G.5
  • 13
    • 0031097787 scopus 로고    scopus 로고
    • Computational Neural Networks in Conjunction with Principal Component Analysis for Resolving Highly Nonlinear Kinetics
    • Ventura, S.; Silva, M.; Pérez-Bendito, D.; Hervás, C. Computational Neural Networks in Conjunction with Principal Component Analysis for Resolving Highly Nonlinear Kinetics. J. Chem. Inf. Comput. Sci. 1997, 37, 287-291.
    • (1997) J. Chem. Inf. Comput. Sci. , vol.37 , pp. 287-291
    • Ventura, S.1    Silva, M.2    Pérez-Bendito, D.3    Hervás, C.4
  • 17
    • 0043052228 scopus 로고    scopus 로고
    • Prediction of Chemical Carcinogenicity in Rodents by Machine Learning of Decision Trees and Rule Sets
    • Gini, G. C., Katritzky, A. R., Eds.; AAAI Press: Menlo Park, CA
    • Bahler, D.; Bristol, D. W. Prediction of Chemical Carcinogenicity in Rodents by Machine Learning of Decision Trees and Rule Sets. In Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools; AAAI 1999 Spring Symposium Series; Gini, G. C., Katritzky, A. R., Eds.; AAAI Press: Menlo Park, CA, 1999; pp 74-77.
    • (1999) Predictive Toxicology of Chemicals: Experiences and Impact of AI Tools; AAAI 1999 Spring Symposium Series , pp. 74-77
    • Bahler, D.1    Bristol, D.W.2
  • 18
    • 0032575969 scopus 로고    scopus 로고
    • HyTEx (Hybrid Toxicology Expert System): Architecture and Implementation of a Multi-domain Hybrid Expert System for Toxicology
    • Gini, G.; Testaguzza, V.; Benfenati, E.; Todeschini, R. HyTEx (Hybrid Toxicology Expert System): Architecture and Implementation of a Multi-domain Hybrid Expert System for Toxicology. Chemom. Intell. Lab. Syst. 1998, 43, 135-145.
    • (1998) Chemom. Intell. Lab. Syst. , vol.43 , pp. 135-145
    • Gini, G.1    Testaguzza, V.2    Benfenati, E.3    Todeschini, R.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.