메뉴 건너뛰기




Volumn , Issue , 2009, Pages 1082-1087

RING: An integrated method for frequent representative subgraph mining

Author keywords

[No Author keywords available]

Indexed keywords

EMPIRICAL STUDIES; FREQUENT PATTERNS; INTEGRATED METHOD; INVARIANT VECTORS; MINING PROCESS; MULTI-DIMENSIONAL SPACE; PATTERN MINING; R-TREES; REPRESENTATIVE SELECTION; SUBGRAPH MINING; SYNTHETIC DATASETS;

EID: 77951149815     PISSN: 15504786     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDM.2009.96     Document Type: Conference Paper
Times cited : (22)

References (25)
  • 1
    • 2442483205 scopus 로고    scopus 로고
    • Mining molecular fragments: Finding relevant substructures of molecules
    • C. Borgelt, and M. Berthold. Mining Molecular Fragments: Finding Relevant Substructures of Molecules. Proc. of ICDM, 2002.
    • (2002) Proc. of ICDM
    • Borgelt, C.1    Berthold, M.2
  • 2
    • 0032024433 scopus 로고    scopus 로고
    • A graph distance metric based on the maximal common subgraph
    • H. Bunke and K.Shearer. A graph distance metric based on the maximal common subgraph. Pattern Recognition Letters, 1998.
    • (1998) Pattern Recognition Letters
    • Bunke, H.1    Shearer, K.2
  • 3
    • 84880088183 scopus 로고    scopus 로고
    • Finding frequent substructures in chemical compounds
    • L. Dehaspe, H. Toivonen, and R. King. Finding frequent substructures in chemical compounds. Proc. of KDD, 1998.
    • (1998) Proc. of KDD
    • Dehaspe, L.1    Toivonen, H.2    King, R.3
  • 4
    • 0021615874 scopus 로고
    • R-Tree: A dynamic index structure for spatial searching
    • A. Guttman, R-Tree: A dynamic index structure for spatial searching. Proc. of SIGMOD, 1984.
    • (1984) Proc. of SIGMOD
    • Guttman, A.1
  • 6
    • 77956337225 scopus 로고    scopus 로고
    • MUSK: Uniform sampling of k maximal patterns
    • M. Hasan and M. Zaki. MUSK: Uniform Sampling of k Maximal Patterns. Proc. of SDM, 2009.
    • (2009) Proc. of SDM
    • Hasan, M.1    Zaki, M.2
  • 7
    • 84865096110 scopus 로고    scopus 로고
    • Output space sampling for graph patterns
    • M. Hasan and M. Zaki. Output Space Sampling for Graph Patterns. Proc. of VLDB, 2009.
    • (2009) Proc. of VLDB
    • Hasan, M.1    Zaki, M.2
  • 8
    • 84878102536 scopus 로고    scopus 로고
    • GraphRank: Statistical modeling and mining of significant subgraphs in the feature space
    • H. He and A. Singh, GraphRank: Statistical Modeling and Mining of Significant Subgraphs in the Feature Space, Proc. of ICDM, 2006.
    • (2006) Proc. of ICDM
    • He, H.1    Singh, A.2
  • 9
  • 10
    • 12244294770 scopus 로고    scopus 로고
    • SPIN: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining maximal frequent subgraphs from graph databases. Proc. of KDD, 2004.
    • (2004) Proc. of KDD
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 11
    • 34548771873 scopus 로고    scopus 로고
    • An apriori-based algorithm for mining frequent substructures from graph data
    • A. Inokuchi, T. Washio, and H. Motoda. An apriori-based algorithm for mining frequent substructures from graph data. Proc. of PDKK, 2000.
    • (2000) Proc. of PDKK
    • Inokuchi, A.1    Washio, T.2    Motoda, H.3
  • 12
    • 14844305006 scopus 로고    scopus 로고
    • An efficient algorithm for detecting frequent subgraphs in bioloical networks
    • M. Koyuturk, A. Grama, and W.Szpankowski. An efficient algorithm for detecting frequent subgraphs in bioloical networks. Bioinformatics, 2004.
    • (2004) Bioinformatics
    • Koyuturk, M.1    Grama, A.2    Szpankowski, W.3
  • 14
    • 27944453480 scopus 로고    scopus 로고
    • Finding frequent patterns in a large sparse graph
    • M. Kuramochi, and G. Karypis, Finding Frequent Patterns in a Large Sparse Graph. DMKD, 2005.
    • (2005) DMKD
    • Kuramochi, M.1    Karypis, G.2
  • 15
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. Kok. A quickstart in frequent structure mining can make a difference, Proc of KDD, 2004.
    • (2004) Proc of KDD
    • Nijssen, S.1    Kok, J.2
  • 16
    • 0242625288 scopus 로고    scopus 로고
    • ANF: A fast and scalable tool for data mining in massive graphs
    • C. Palmer, P. Gibbons, and C. Faloutsos. ANF: A fast and scalable tool for data mining in massive graphs, Proc. of KDD, 2002.
    • (2002) Proc. of KDD
    • Palmer, C.1    Gibbons, P.2    Faloutsos, C.3
  • 19
  • 20
    • 78149333073 scopus 로고    scopus 로고
    • GSpan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gSpan: graph-based substructure pattern mining, Proc. of ICDM, 2002.
    • (2002) Proc. of ICDM
    • Yan, X.1    Han, J.2
  • 21
    • 77951163628 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest: Algorithms and applications
    • M. Zaki. Efficiently mining frequent trees in a forest: algorithms and applications, IEEE TKDE, 2005.
    • (2005) IEEE TKDE
    • Zaki, M.1
  • 22
    • 34548728521 scopus 로고    scopus 로고
    • Monkey: Approximate graph mining based on spanning trees
    • S. Zhang, J. Yang, and V. Cheedella. Monkey: approximate graph mining based on spanning trees. Proc. of ICDE, 2007.
    • (2007) Proc. of ICDE
    • Zhang, S.1    Yang, J.2    Cheedella, V.3
  • 24
    • 84870438764 scopus 로고    scopus 로고
    • Gene Ontology. http://www.geneontology.org/.
    • Gene Ontology
  • 25


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.