메뉴 건너뛰기




Volumn 2006, Issue , 2006, Pages 74-

A partition-based approach to graph mining

Author keywords

[No Author keywords available]

Indexed keywords

DYNAMIC ENVIRONMENTS; GRAPH MINING ALGORITHMS; SUBGRAPHS;

EID: 33749642785     PISSN: 10844627     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/ICDE.2006.7     Document Type: Conference Paper
Times cited : (20)

References (19)
  • 1
    • 0002550768 scopus 로고    scopus 로고
    • Scaling clustering algorithms to large databases
    • P. Bradley, U. Fayyad, and C. Reina. Scaling clustering algorithms to large databases. ACM SIGKDD, 1998.
    • (1998) ACM SIGKDD
    • Bradley, P.1    Fayyad, U.2    Reina, C.3
  • 5
    • 12244294770 scopus 로고    scopus 로고
    • SPIN: Mining maximal frequent subgraphs from graph databases
    • J. Huan, W. Wang, J. Prins, and J. Yang. SPIN: mining maximal frequent subgraphs from graph databases. ACM SIGKDD, 2004.
    • (2004) ACM SIGKDD
    • Huan, J.1    Wang, W.2    Prins, J.3    Yang, J.4
  • 8
    • 33749611793 scopus 로고    scopus 로고
    • An efficient algorithm for discovering frequent subgraphs
    • M. Kuramochi and G. Karypis. An efficient algorithm for discovering frequent subgraphs. ICDM, 2001.
    • (2001) ICDM
    • Kuramochi, M.1    Karypis, G.2
  • 9
    • 33749641027 scopus 로고    scopus 로고
    • CLARANS: A method for clustering objects for spatial data mining
    • R. T. Ng and J. Han. CLARANS: A method for clustering objects for spatial data mining. ICDE, 2002.
    • (2002) ICDE
    • Ng, R.T.1    Han, J.2
  • 10
    • 12244294066 scopus 로고    scopus 로고
    • A quickstart in frequent structure mining can make a difference
    • S. Nijssen and J. N. Kok. A quickstart in frequent structure mining can make a difference. ACM SIGKDD, 2004.
    • (2004) ACM SIGKDD
    • Nijssen, S.1    Kok, J.N.2
  • 11
    • 0002082858 scopus 로고
    • An efficient algorithm for mining association rules in large databases
    • A. Savasere, E. Omiecinski, and S. Navathe. An efficient algorithm for mining association rules in large databases. VLDB, 1995.
    • (1995) VLDB
    • Savasere, A.1    Omiecinski, E.2    Navathe, S.3
  • 12
    • 0002139432 scopus 로고    scopus 로고
    • Sprint: A scalable parallel classifier for data mining
    • J. Shafer, R. Agrawal, and M. Mehta. Sprint: a scalable parallel classifier for data mining. VLDB, 1996.
    • (1996) VLDB
    • Shafer, J.1    Agrawal, R.2    Mehta, M.3
  • 13
    • 2442574772 scopus 로고    scopus 로고
    • Unordered tree mining with applications to phylogeny
    • D. Shasha, J. Wang, and S. Zhang. Unordered tree mining with applications to phylogeny. ICDE, 2004.
    • (2004) ICDE
    • Shasha, D.1    Wang, J.2    Zhang, S.3
  • 14
    • 33749630152 scopus 로고    scopus 로고
    • Dryade: A new approach for discovering closed frequent trees in heterogeneous tree databases
    • A. Termier, M.-C. Rousset, and M. Sebag. Dryade: a new approach for discovering closed frequent trees in heterogeneous tree databases. IEEE ICDM, 2004.
    • (2004) IEEE ICDM
    • Termier, A.1    Rousset, M.-C.2    Sebag, M.3
  • 15
    • 12244251830 scopus 로고    scopus 로고
    • Scalable mining of large disk-based graph databases
    • C. Wang, W. Wang, J. Pei, Y. Zhu, and B. Shi. Scalable mining of large disk-based graph databases. ACM SIGKDD, 2004.
    • (2004) ACM SIGKDD
    • Wang, C.1    Wang, W.2    Pei, J.3    Zhu, Y.4    Shi, B.5
  • 16
    • 34547982227 scopus 로고    scopus 로고
    • Gspan: Graph-based substructure pattern mining
    • X. Yan and J. Han. gspan: Graph-based substructure pattern mining. IEEE ICDM, 2002.
    • (2002) IEEE ICDM
    • Yan, X.1    Han, J.2
  • 17
    • 77952334885 scopus 로고    scopus 로고
    • Closegraph: Mining closed frequent graph patterns
    • X. Yan and J. Han. Closegraph: Mining closed frequent graph patterns. ACM SIGKDD, 2003.
    • (2003) ACM SIGKDD
    • Yan, X.1    Han, J.2
  • 18
    • 3142736597 scopus 로고    scopus 로고
    • Graph indexing: A frequent structure-based approach
    • X. Yan, P. S. Yu, and J. Han. Graph indexing: a frequent structure-based approach. ACM SIGMOD, 2004.
    • (2004) ACM SIGMOD
    • Yan, X.1    Yu, P.S.2    Han, J.3
  • 19
    • 0242709382 scopus 로고    scopus 로고
    • Efficiently mining frequent trees in a forest
    • M. Zaki. Efficiently mining frequent trees in a forest. ACM SIGKDD, 2002.
    • (2002) ACM SIGKDD
    • Zaki, M.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.