-
1
-
-
39449103059
-
-
(a) Spellberg, B.; Guidos, R.; Gilbert, D.; Bradley, J.; Boucher, H. W.; Scheid, W. M.; Bartlett, J. G.; Edwards, J., Jr. Clin. Infect. Dis. 2008, 46, 155-164.
-
(2008)
Clin. Infect. Dis
, vol.46
, pp. 155-164
-
-
Spellberg, B.1
Guidos, R.2
Gilbert, D.3
Bradley, J.4
Boucher, H.W.5
Scheid, W.M.6
Bartlett, J.G.7
Edwards Jr., J.8
-
2
-
-
52249094198
-
-
(b) Payne, D. J. Science 2008, 321, 1644-1645.
-
(2008)
Science
, vol.321
, pp. 1644-1645
-
-
Payne, D.J.1
-
3
-
-
14844362964
-
-
(a) Fisher, J. F.; Meroueh, S. O.; Mobashery, S. Chem. Rev. 2005, 105, 395-424.
-
(2005)
Chem. Rev
, vol.105
, pp. 395-424
-
-
Fisher, J.F.1
Meroueh, S.O.2
Mobashery, S.3
-
5
-
-
33845412093
-
-
White, D. G, Alekshun, M. N, McDermott, P. F, Eds, ASM Press: Washington, DC
-
(c) Jacoby, G.; Bush, K. In Frontiers in Antimicrobial Resistance; White, D. G., Alekshun, M. N., McDermott, P. F., Eds.; ASM Press: Washington, DC, 2005; pp 53-65.
-
(2005)
Frontiers in Antimicrobial Resistance
, pp. 53-65
-
-
Jacoby, G.1
Bush, K.2
-
9
-
-
17444363393
-
-
(a) Walsh, T. R.; Toleman, M. A.; Poirel, L.; Nordmann, P. Clin. Microbiol, Rev. 2005, 18, 306-325.
-
(2005)
Clin. Microbiol, Rev
, vol.18
, pp. 306-325
-
-
Walsh, T.R.1
Toleman, M.A.2
Poirel, L.3
Nordmann, P.4
-
13
-
-
0019514597
-
-
For early explorations of cyclobutanones as β-lactam mimics for β-lactamase inhibition, see: a
-
For early explorations of cyclobutanones as β-lactam mimics for β-lactamase inhibition, see: (a) Gordon, E. M.; Pluščec, J.; Ondetti, M. A. Tetrahedron Lett. 1981, 22, 1871-1874.
-
(1981)
Tetrahedron Lett
, vol.22
, pp. 1871-1874
-
-
Gordon, E.M.1
Pluščec, J.2
Ondetti, M.A.3
-
14
-
-
37049091785
-
-
(b) Meth-Cohn, O.; Reason, A. J.; Roberts, S. M. J. Chem. Soc., Chem. Commun. 1982, 90-92.
-
(1982)
J. Chem. Soc., Chem. Commun
, pp. 90-92
-
-
Meth-Cohn, O.1
Reason, A.J.2
Roberts, S.M.3
-
15
-
-
37049100391
-
-
(c) Lowe, G.; Swain, S. J, Chem. Soc, Perkin Trans. 1 1985, 391-398.
-
(1985)
J, Chem. Soc, Perkin Trans. 1
, pp. 391-398
-
-
Lowe, G.1
Swain, S.2
-
16
-
-
0021945484
-
-
Lange, G.; Savard, M. E.; Viswanatha, T.; Dmitrienko, G. I. Tetrahedron Lett. 1985, 26, 17911794.
-
(d) Lange, G.; Savard, M. E.; Viswanatha, T.; Dmitrienko, G. I. Tetrahedron Lett. 1985, 26, 17911794.
-
-
-
-
18
-
-
77950429117
-
-
See also: f, Brown, A. G, Roberts, S. M, Eds, Royal Society of Chemistry: London
-
See also: (f) Agathocleous, D.; Buckwell, S.; Proctor, P.; Page, M. I. In Recent Advances in the Chemistry of β-Lactam Antibiotics; Brown, A. G., Roberts, S. M., Eds.; Royal Society of Chemistry: London, 1985; pp 1831.
-
(1985)
Recent Advances in the Chemistry of β-Lactam Antibiotics
, pp. 1831
-
-
Agathocleous, D.1
Buckwell, S.2
Proctor, P.3
Page, M.I.4
-
19
-
-
37549010371
-
-
For recent studies involving cyclobutanones and isopenicillin N synthase, see
-
For recent studies involving cyclobutanones and isopenicillin N synthase, see: Stewart, A. C.; Clifton, I. J.; Adlington, R. M.; Baldwin, J. E.; Rutledge, P. J. ChemBioChem 2007, 8, 2003-2007.
-
(2007)
ChemBioChem
, vol.8
, pp. 2003-2007
-
-
Stewart, A.C.1
Clifton, I.J.2
Adlington, R.M.3
Baldwin, J.E.4
Rutledge, P.J.5
-
20
-
-
52449105960
-
-
Johnson, J. W.; Evanoff, D. P.; Savard, M. E.; Lange, G.; Ramadhar, T. R.; Assoud, A.; Taylor, N. J.; Dmitrienko, G. I. J. Org. Chem. 2008, 73, 69706982.
-
(2008)
J. Org. Chem
, vol.73
, pp. 69706982
-
-
Johnson, J.W.1
Evanoff, D.P.2
Savard, M.E.3
Lange, G.4
Ramadhar, T.R.5
Assoud, A.6
Taylor, N.J.7
Dmitrienko, G.I.8
-
21
-
-
77950443142
-
-
See Supporting Information for additional details and discussion
-
See Supporting Information for additional details and discussion.
-
-
-
-
22
-
-
66149088454
-
-
(a) Pillai, D. R.; Melano, R.; Rawte, P.; Lo, S.; Tijet, N.; Fuksa, M.; Roda, N.; Farrell, D. J.; Krajden, S. Emerg. Infect. Dis. 2009, 15, 827-829.
-
(2009)
Emerg. Infect. Dis
, vol.15
, pp. 827-829
-
-
Pillai, D.R.1
Melano, R.2
Rawte, P.3
Lo, S.4
Tijet, N.5
Fuksa, M.6
Roda, N.7
Farrell, D.J.8
Krajden, S.9
-
23
-
-
67649148037
-
-
(b) Toye, B.; Krajden, S.; Fuksa, M.; Low, D. E.; Pillai, D. R. Can. Med. Assoc. J. 2009, 180, 1225-1226.
-
(2009)
Can. Med. Assoc. J
, vol.180
, pp. 1225-1226
-
-
Toye, B.1
Krajden, S.2
Fuksa, M.3
Low, D.E.4
Pillai, D.R.5
-
24
-
-
34248580602
-
-
(a) Ke, W.; Bethel, C. R.; Thomson, J. M.; Bonomo, R. A.; van den Akker, F. Biochemistry 2007, 46, 5732-5740.
-
(2007)
Biochemistry
, vol.46
, pp. 5732-5740
-
-
Ke, W.1
Bethel, C.R.2
Thomson, J.M.3
Bonomo, R.A.4
van den Akker, F.5
-
25
-
-
54049149405
-
-
(b) Petrella, S.; Ziental-Gelus, N.; Mayer, C.; Renard, M.; Jarlier, V.; Sougakoff, W. Antimicrob. Agents Chemother. 2008, 52, 3725-3736.
-
(2008)
Antimicrob. Agents Chemother
, vol.52
, pp. 3725-3736
-
-
Petrella, S.1
Ziental-Gelus, N.2
Mayer, C.3
Renard, M.4
Jarlier, V.5
Sougakoff, W.6
-
26
-
-
0032925064
-
-
Laraki, N.; Franceschini, N.; Rossolini, G. M.; Santucci, P.; Meunier, C.; de Paux, E.; Amicosante, G.; Frère, J. M.; Galleni, M. Antimicrob. Agents Chemother. 1999, 43, 902-906.
-
(1999)
Antimicrob. Agents Chemother
, vol.43
, pp. 902-906
-
-
Laraki, N.1
Franceschini, N.2
Rossolini, G.M.3
Santucci, P.4
Meunier, C.5
de Paux, E.6
Amicosante, G.7
Frère, J.M.8
Galleni, M.9
-
27
-
-
0028933234
-
-
(a) Nukaga, M.; Haruta, S.; Tanimoto, K.; Kogure, K.; Taniguchi, K.; Tamaki, M.; Sawai, T. J. Biol. Chem. 1995, 270, 5729-5735.
-
(1995)
J. Biol. Chem
, vol.270
, pp. 5729-5735
-
-
Nukaga, M.1
Haruta, S.2
Tanimoto, K.3
Kogure, K.4
Taniguchi, K.5
Tamaki, M.6
Sawai, T.7
-
28
-
-
0033543196
-
-
(b) Crichlow, G. V.; Kuzin, A. P.; Nukaga, M.; Mayama, K.; Sawai, T.; Knox, J. R. Biochemistry 1999, 38, 10256-10261.
-
(1999)
Biochemistry
, vol.38
, pp. 10256-10261
-
-
Crichlow, G.V.1
Kuzin, A.P.2
Nukaga, M.3
Mayama, K.4
Sawai, T.5
Knox, J.R.6
-
29
-
-
63449092015
-
-
Lee, J. H.; Jeong, S. H.; Cha, S.-S.; Lee, S. H. PLoS Pathog. 2009, 5, e1000221.
-
(c) Lee, J. H.; Jeong, S. H.; Cha, S.-S.; Lee, S. H. PLoS Pathog. 2009, 5, e1000221.
-
-
-
-
30
-
-
77950440301
-
-
For examples, see: a
-
For examples, see: (a) Paetzel, M.; Danel, F.; de Castro, L.; Mosimann, S. C.; Page, M. G. P.; Strynadka, N. C. J. Nat. Struct. Biol. 2000, 7, 918925.
-
(2000)
Nat. Struct. Biol
, vol.7
, pp. 918925
-
-
Paetzel, M.1
Danel, F.2
de Castro, L.3
Mosimann, S.C.4
Page, M.G.P.5
Strynadka, N.C.J.6
-
31
-
-
0035807996
-
-
(b) Golemi, D.; Maveyraud, L.; Vakulenko, S.; Samama, J.-P.; Mobashery, S. Proc. Natl. Acad. Sci. U.S.A. 2001, 98, 14280-14285.
-
(2001)
Proc. Natl. Acad. Sci. U.S.A
, vol.98
, pp. 14280-14285
-
-
Golemi, D.1
Maveyraud, L.2
Vakulenko, S.3
Samama, J.-P.4
Mobashery, S.5
-
32
-
-
0021832534
-
-
Fluorinated aldehydes and ketones are more extensively hydrated than the non-fluorinated counterparts and are also more potent inhibitors of serineand metalloproteases. Despite the fact that these inhibitors are largely hydrated, it has been shown that inhibition occurs by binding of the aldehyde or ketone form to the active site and formation of a serine-bound hemiacetal or hemiketal, a Gelb, M. H, Svaren, J. P, Abeles, R. H. Biochemistry 1985, 24, 1813-1817
-
Fluorinated aldehydes and ketones are more extensively hydrated than the non-fluorinated counterparts and are also more potent inhibitors of serineand metalloproteases. Despite the fact that these inhibitors are largely hydrated, it has been shown that inhibition occurs by binding of the aldehyde or ketone form to the active site and formation of a serine-bound hemiacetal or hemiketal. (a) Gelb, M. H.; Svaren, J. P.; Abeles, R. H. Biochemistry 1985, 24, 1813-1817.
-
-
-
-
33
-
-
0018782953
-
-
(b) Chen, R.; Gorenstein, D. G.; Kennedy, W. P.; Lowe, G.; Nurse, D.; Schultz, R. M. Biochemistry 1979, 18, 921-926.
-
(1979)
Biochemistry
, vol.18
, pp. 921-926
-
-
Chen, R.1
Gorenstein, D.G.2
Kennedy, W.P.3
Lowe, G.4
Nurse, D.5
Schultz, R.M.6
-
34
-
-
77950430380
-
-
50 values for the extent of hydration (Table S2, Supporting Information). The relative potency of the inhibitors follows the same trend but the differences in potency are more substantial. A reviewer is thanked for helpful comments in this context.
-
50 values for the extent of hydration (Table S2, Supporting Information). The relative potency of the inhibitors follows the same trend but the differences in potency are more substantial. A reviewer is thanked for helpful comments in this context.
-
-
-
-
35
-
-
77950456024
-
-
8 and likely also by inhibitor concentration.
-
8 and likely also by inhibitor concentration.
-
-
-
-
36
-
-
0035822671
-
-
(a) Danel, F.; Paetzel, M.; Strynadka, N. C. J.; Page, M. G. P. Biochemistry 2001, 40, 9412-9420.
-
(2001)
Biochemistry
, vol.40
, pp. 9412-9420
-
-
Danel, F.1
Paetzel, M.2
Strynadka, N.C.J.3
Page, M.G.P.4
-
37
-
-
77950389748
-
-
(b) Maveyraud, L.; Golemi, D.; Kotra, L. P. ; Tranier, S.; Vakulenko, S.; Mobashery, S.; Samama, J.-P. Structure 2000, 8, 12891298.
-
(2000)
Structure
, vol.8
, pp. 12891298
-
-
Maveyraud, L.1
Golemi, D.2
Kotra, L.P.3
Tranier, S.4
Vakulenko, S.5
Mobashery, S.6
Samama, J.-P.7
-
38
-
-
74849116058
-
-
Serine hemiketals of α-ketoheterocycles in fatty acid amide hydrolase (FAAH) and a trifluoromethyl ketone in elastase are not protonated. (a) Mileni, M.; Garfunkle, J.; Ezzili, C.; Kimball, F. S.; Cravatt, B. F.; Stevens, R. C.; Boger, D. L. J. Med. Chem, 2010, 53, 230-240.
-
Serine hemiketals of α-ketoheterocycles in fatty acid amide hydrolase (FAAH) and a trifluoromethyl ketone in elastase are not protonated. (a) Mileni, M.; Garfunkle, J.; Ezzili, C.; Kimball, F. S.; Cravatt, B. F.; Stevens, R. C.; Boger, D. L. J. Med. Chem, 2010, 53, 230-240.
-
-
-
-
39
-
-
68249147395
-
-
(b) Tamada, T.; Kinoshita, T.; Kurihara, K.; Adachi, M.; Ohhara, T.; Imai, K.; Kuroki, R.; Tada, T. J. Am. Chem. Soc, 2009, 131, 11033-11040.
-
(2009)
J. Am. Chem. Soc
, vol.131
, pp. 11033-11040
-
-
Tamada, T.1
Kinoshita, T.2
Kurihara, K.3
Adachi, M.4
Ohhara, T.5
Imai, K.6
Kuroki, R.7
Tada, T.8
-
40
-
-
63649094988
-
-
and references therein. The loss of chlorine from proteinbound inhibitors has also been reported. X-ray radiation has been reported to cause cleavage of disulfides, decarboxylation of aspartate and glutamate residues, and cleavage of CBr bonds. See: a
-
X-ray radiation has been reported to cause cleavage of disulfides, decarboxylation of aspartate and glutamate residues, and cleavage of CBr bonds. See: (a) Petrova, T.; Lunin, V. Y.; Ginell, S.; Hazemann, I.; Lazarski, K.; Mitschier, A.; Podjarny, A.; Joachimiak, A. J. Mol. Biol. 2009, 387, 1092-1105, and references therein. The loss of chlorine from proteinbound inhibitors has also been reported.
-
(2009)
J. Mol. Biol
, vol.387
, pp. 1092-1105
-
-
Petrova, T.1
Lunin, V.Y.2
Ginell, S.3
Hazemann, I.4
Lazarski, K.5
Mitschier, A.6
Podjarny, A.7
Joachimiak, A.8
-
41
-
-
0027258737
-
-
Raag, R, Li, H, Jones, B. C, Poulos, T. L. Biochemistry 1993, 32, 4571-4578. We thank a reviewer for suggestions in this regard
-
(b) Raag, R.; Li, H.; Jones, B. C.; Poulos, T. L. Biochemistry 1993, 32, 4571-4578. We thank a reviewer for suggestions in this regard.
-
-
-
-
42
-
-
77950425846
-
-
Another potential contributing factor might involve disorder caused by a rapid conformational change of the inhibitor. Ab initio and DFT molecular modeling studies indicate that a model hemiketal of 4α can adopt two slightly different exo envelope conformations in which the chlorines show the greatest differences in position. The low energy difference (0.1 -0.3 kcal/mol) and the low energy barrier (0.4-0.8 kcal/mol) for interconversion support this hypothesis Figures S3 and S4, Supporting Information
-
Another potential contributing factor might involve disorder caused by a rapid conformational change of the inhibitor. Ab initio and DFT molecular modeling studies indicate that a model hemiketal of 4α can adopt two slightly different exo envelope conformations in which the chlorines show the greatest differences in position. The low energy difference (0.1 -0.3 kcal/mol) and the low energy barrier (0.4-0.8 kcal/mol) for interconversion support this hypothesis (Figures S3 and S4, Supporting Information).
-
-
-
-
43
-
-
77950455000
-
-
For example, the MIC of meropenem was reduced from 64 to 16 μg/mL in the presence of 5 for an MBL-producing strain of Chryseobacterium meningosepticum and for an MBL-producing Stenotrophomonas maltophilia strain (Table S3, Supporting Information).
-
For example, the MIC of meropenem was reduced from 64 to 16 μg/mL in the presence of 5 for an MBL-producing strain of Chryseobacterium meningosepticum and for an MBL-producing Stenotrophomonas maltophilia strain (Table S3, Supporting Information).
-
-
-
|