메뉴 건너뛰기




Volumn 26, Issue 5, 2010, Pages 668-675

Bayesian rule learning for biomedical data mining

Author keywords

[No Author keywords available]

Indexed keywords

BIOLOGICAL MARKER; PROTEOME;

EID: 77949607287     PISSN: 13674803     EISSN: 14602059     Source Type: Journal    
DOI: 10.1093/bioinformatics/btq005     Document Type: Article
Times cited : (32)

References (49)
  • 1
    • 0033536012 scopus 로고    scopus 로고
    • Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays
    • Alon, U. et al. (1999) Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc. Natl Acad. Sci. USA, 96, 6745-6750.
    • (1999) Proc. Natl Acad. Sci. USA , vol.96 , pp. 6745-6750
    • Alon, U.1
  • 2
    • 18544375333 scopus 로고    scopus 로고
    • MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia
    • Armstrong, S.A. et al. (2002) MLL translocations specify a distinct gene expression profile that distinguishes a unique leukemia. Nat. Genet., 30, 41-47.
    • (2002) Nat. Genet. , vol.30 , pp. 41-47
    • Armstrong, S.A.1
  • 4
    • 18544365698 scopus 로고    scopus 로고
    • Gene-expression profiles predict survival of patients with lung adenocarcinoma
    • Beer, D.G. et al. (2002) Gene-expression profiles predict survival of patients with lung adenocarcinoma. Nat. Med., 8, 816-824.
    • (2002) Nat. Med. , vol.8 , pp. 816-824
    • Beer, D.G.1
  • 5
    • 0035923521 scopus 로고    scopus 로고
    • Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses
    • Bhattacharjee, A. et al. (2001) Classification of human lung carcinomas by mRNA expression profiling reveals distinct adenocarcinoma subclasses. Proc. Natl Acad. Sci. USA, 98, 13790-13795.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 13790-13795
    • Bhattacharjee, A.1
  • 6
    • 0002248815 scopus 로고    scopus 로고
    • A Bayesian approach to learning Bayesian networks with local structure
    • De Raedt, L. ed. Providence, RI, IOS Press, Amsterdam, The Netherlands
    • Chickering, D.M. et al. (1997) A Bayesian approach to learning Bayesian networks with local structure. In De Raedt, L. ed. Proceedings of the thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97). Providence, RI, IOS Press, Amsterdam, The Netherlands, pp. 80-89.
    • (1997) Proceedings of the thirteenth Conference on Uncertainty in Artificial Intelligence (UAI-97) , pp. 80-89
    • Chickering, D.M.1
  • 8
    • 0002428766 scopus 로고    scopus 로고
    • Learning to classify english text with ILP methods
    • Cohen, W.W. (1996) Learning to classify english text with ILP methods. In Advances in Inductive Logic Programming, pp. 124-143.
    • (1996) Advances in Inductive Logic Programming , pp. 124-143
    • Cohen, W.W.1
  • 9
    • 34249832377 scopus 로고
    • A Bayesian method for the induction of probabilistic networks from data
    • Cooper, G.F. and Herskovits, E. (1992) A Bayesian method for the induction of probabilistic networks from data. Mach. Learn., 9, 309-347.
    • (1992) Mach. Learn. , vol.9 , pp. 309-347
    • Cooper, G.F.1    Herskovits, E.2
  • 11
    • 34547186252 scopus 로고    scopus 로고
    • Using prior knowledge and rule induction methods to discover molecular markers of prognosis in lung cancer
    • Washington, DC
    • Frey, L. et al. (2005) Using prior knowledge and rule induction methods to discover molecular markers of prognosis in lung cancer. In AMIA Annual Symposium Proceedings, Washington, DC, pp. 256-260.
    • (2005) AMIA Annual Symposium Proceedings , pp. 256-260
    • Frey, L.1
  • 14
    • 33749382486 scopus 로고    scopus 로고
    • Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4. 5
    • Banff, Alberta, Canada. ACM, New York, NY
    • Gabrilovich, E. and Markovitch, S. (2004) Text categorization with many redundant features: using aggressive feature selection to make SVMs competitive with C4. 5. In Proceedings of the 21st International Conference on Machine Learning, Banff, Alberta, Canada. ACM, New York, NY, pp. 41-48.
    • (2004) Proceedings of the 21st International Conference on Machine Learning , pp. 41-48
    • Gabrilovich, E.1    Markovitch, S.2
  • 15
    • 0033569406 scopus 로고    scopus 로고
    • Molecular classification of cancer: class discovery and class prediction by gene expression monitoring
    • Golub, T.R. et al. (1999) Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science, 286, 531-537.
    • (1999) Science , vol.286 , pp. 531-537
    • Golub, T.R.1
  • 16
    • 33745794862 scopus 로고    scopus 로고
    • Rule learning for disease-specific biomarker discovery from clinical proteomic mass spectra
    • Gopalakrishnan, V. et al. (2006) Rule learning for disease-specific biomarker discovery from clinical proteomic mass spectra. Springer Lect. Notes Comput. Sci., 3916, 93-105.
    • (2006) Springer Lect. Notes Comput. Sci. , vol.3916 , pp. 93-105
    • Gopalakrishnan, V.1
  • 17
    • 27544510044 scopus 로고    scopus 로고
    • Proteomic data mining challenges in identification of disease-specific biomarkers from variable resolution mass spectra
    • Society of Industrial and Applied Mathematics International Conference on Data Mining, Lake Buena Vista, FL
    • Gopalakrishnan, V. et al. (2004) Proteomic data mining challenges in identification of disease-specific biomarkers from variable resolution mass spectra. In SIAM Bioinformatics Workshop. Society of Industrial and Applied Mathematics International Conference on Data Mining, Lake Buena Vista, FL.
    • (2004) SIAM Bioinformatics Workshop
    • Gopalakrishnan, V.1
  • 20
    • 0035931947 scopus 로고    scopus 로고
    • Gene-expression profiles in hereditary breast cancer
    • Hedenfalk, I. et al. (2001) Gene-expression profiles in hereditary breast cancer. N. Engl. J. Med., 344, 539-548.
    • (2001) N. Engl. J. Med. , vol.344 , pp. 539-548
    • Hedenfalk, I.1
  • 21
    • 0037443891 scopus 로고    scopus 로고
    • Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection
    • Iizuka, N. et al. (2003) Oligonucleotide microarray for prediction of early intrahepatic recurrence of hepatocellular carcinoma after curative resection. Lancet, 361, 923-929.
    • (2003) Lancet , vol.361 , pp. 923-929
    • Iizuka, N.1
  • 22
    • 0034954414 scopus 로고    scopus 로고
    • Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks
    • Khan, J. et al. (2001) Classification and diagnostic prediction of cancers using gene expression profiling and artificial neural networks. Nat. Med., 7, 673-679.
    • (2001) Nat. Med. , vol.7 , pp. 673-679
    • Khan, J.1
  • 25
  • 27
    • 0037381008 scopus 로고    scopus 로고
    • Gene expression-based classification of malignant gliomas correlates better with survival than histological classification
    • Nutt, C.L. et al. (2003) Gene expression-based classification of malignant gliomas correlates better with survival than histological classification. Cancer Res., 63, 1602-1607.
    • (2003) Cancer Res. , vol.63 , pp. 1602-1607
    • Nutt, C.L.1
  • 29
    • 0037120949 scopus 로고    scopus 로고
    • Serum proteomic patterns for detection of prostatec ancer
    • Petricoin, E.F. III, et al. (2002) Serum proteomic patterns for detection of prostatec ancer. J. Natl Cancer Inst., 94, 1576-1578.
    • (2002) J. Natl Cancer Inst. , vol.94 , pp. 1576-1578
    • Petricoin E.F. III1
  • 30
    • 0037165140 scopus 로고    scopus 로고
    • Prediction of central nervous system embryonal tumour outcome based on gene expression
    • Pomeroy, S.L. et al. (2002) Prediction of central nervous system embryonal tumour outcome based on gene expression. Nature, 415, 436-442.
    • (2002) Nature , vol.415 , pp. 436-442
    • Pomeroy, S.L.1
  • 31
    • 11144355338 scopus 로고    scopus 로고
    • Pharmacoproteomic analysis of pre-and post-chemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast cancer
    • Pusztai, L. et al. (2004) Pharmacoproteomic analysis of pre-and post-chemotherapy plasma samples from patients receiving neoadjuvant or adjuvant chemotherapy for breast cancer. Cancer, 100, 1814-1822.
    • (2004) Cancer , vol.100 , pp. 1814-1822
    • Pusztai, L.1
  • 32
    • 33744584654 scopus 로고
    • Induction of decision trees
    • Quinlan, J.R. (1986) Induction of decision trees. Mach. Learn., 1, 81-106.
    • (1986) Mach. Learn. , vol.1 , pp. 81-106
    • Quinlan, J.R.1
  • 33
    • 8344282137 scopus 로고
    • C4.5: programs for machine learning
    • Quinlan, R. (1994) C4.5: programs for machine learning. Mach. Learn., 16, 235-240.
    • (1994) Mach. Learn. , vol.16 , pp. 235-240
    • Quinlan, R.1
  • 34
    • 0347201147 scopus 로고    scopus 로고
    • Multiclass cancer diagnosis using tumor gene expression signatures
    • Ramaswamy, S. et al. (2001) Multiclass cancer diagnosis using tumor gene expression signatures. Proc. Natl Acad. Sci. USA, 98, 15149-15154.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 15149-15154
    • Ramaswamy, S.1
  • 35
    • 28844432511 scopus 로고    scopus 로고
    • Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis
    • Ranganathan, S. et al. (2005) Proteomic profiling of cerebrospinal fluid identifies biomarkers for amyotrophic lateral sclerosis. J. Neurochem., 95, 1461-1471.
    • (2005) J. Neurochem. , vol.95 , pp. 1461-1471
    • Ranganathan, S.1
  • 36
    • 0037142053 scopus 로고    scopus 로고
    • The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma
    • Rosenwald, A. et al. (2002) The use of molecular profiling to predict survival after chemotherapy for diffuse large-B-cell lymphoma. N. Engl. J. Med., 346, 1937-1947.
    • (2002) N. Engl. J. Med. , vol.346 , pp. 1937-1947
    • Rosenwald, A.1
  • 37
    • 18244409933 scopus 로고    scopus 로고
    • Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning
    • Shipp, M.A. et al. (2002) Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning. Nat. Med., 8, 68-74.
    • (2002) Nat. Med. , vol.8 , pp. 68-74
    • Shipp, M.A.1
  • 38
    • 84886614002 scopus 로고
    • Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system
    • Shortliffe, E.H. et al. (1975) Computer-based consultations in clinical therapeutics: explanation and rule acquisition capabilities of the MYCIN system, Comput. Biomed. Res., 8, 303-320.
    • (1975) Comput. Biomed. Res. , vol.8 , pp. 303-320
    • Shortliffe, E.H.1
  • 40
    • 19044391072 scopus 로고    scopus 로고
    • Gene expression correlates of clinical prostate cancer behavior
    • Singh, D. et al. (2002) Gene expression correlates of clinical prostate cancer behavior. Cancer Cell, 1, 203-209.
    • (2002) Cancer Cell , vol.1 , pp. 203-209
    • Singh, D.1
  • 41
    • 0035845531 scopus 로고    scopus 로고
    • Chemosensitivity prediction by transcriptional profiling
    • Staunton, J.E. et al. (2001) Chemosensitivity prediction by transcriptional profiling. Proc. Natl Acad. Sci. USA, 98, 10787-10792.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 10787-10792
    • Staunton, J.E.1
  • 42
    • 0035887459 scopus 로고    scopus 로고
    • Molecular classification of human carcinomas by use of gene expression signatures
    • Su, A.I. et al. (2001) Molecular classification of human carcinomas by use of gene expression signatures. Cancer Res., 61, 7388-7393.
    • (2001) Cancer Res. , vol.61 , pp. 7388-7393
    • Su, A.I.1
  • 44
    • 39049180570 scopus 로고    scopus 로고
    • Patient-Specific Models for Predicting the Outcomes of Patients with Community Acquired Pneumonia
    • Washington, DC
    • Visweswaran, S. and Cooper, G.F. (2005) Patient-Specific Models for Predicting the Outcomes of Patients with Community Acquired Pneumonia. In Proceedings of AMIA 2005 Annual Symposium. Washington, DC, pp. 759-763.
    • (2005) Proceedings of AMIA 2005 Annual Symposium , pp. 759-763
    • Visweswaran, S.1    Cooper, G.F.2
  • 45
    • 0035970050 scopus 로고    scopus 로고
    • Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer
    • Welsh, J.B. et al. (2001) Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc. Natl Acad. Sci. USA, 98, 1176-1181.
    • (2001) Proc. Natl Acad. Sci. USA , vol.98 , pp. 1176-1181
    • Welsh, J.B.1
  • 47
    • 0011063449 scopus 로고    scopus 로고
    • Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures
    • Wright, G.L. et al. (1999) Proteinchip(R) surface enhanced laser desorption/ionization (SELDI) mass spectrometry: a novel protein biochip technology for detection of prostate cancer biomarkers in complex protein mixtures. Prostate Cancer Prostatic Dis., 2, 264-276.
    • (1999) Prostate Cancer Prostatic Dis , vol.2 , pp. 264-276
    • Wright, G.L.1
  • 48
    • 49049122217 scopus 로고    scopus 로고
    • Combination data mining methods with new medical data to predicting outcome of coronary heart disease
    • Gyeongju, South Korea
    • Xing, Y. et al. (2007) Combination data mining methods with new medical data to predicting outcome of coronary heart disease. In Proccedings of the International Conference on Convergence Information Technology., Gyeongju, South Korea, pp. 868-872.
    • (2007) Proccedings of the International Conference on Convergence Information Technology , pp. 868-872
    • Xing, Y.1
  • 49
    • 19044399684 scopus 로고    scopus 로고
    • Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling
    • Yeoh, E.J. et al. (2002) Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 1, 133-143.
    • (2002) Cancer Cell , vol.1 , pp. 133-143
    • Yeoh, E.J.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.